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ABSTRACT
Models of human navigation play an important role for un-
derstanding and facilitating user behavior in hypertext sys-
tems. In this paper, we conduct a series of principled ex-
periments with decentralized search - an established model
of human navigation in social networks - and study its ap-
plicability to information networks. We apply several vari-
ations of decentralized search to model human navigation
in information networks and we evaluate the outcome in a
series of experiments. In these experiments, we study the
validity of decentralized search by comparing it with hu-
man navigational paths from an actual information network
- Wikipedia. We find that (i) navigation in social networks
appears to differ from human navigation in information net-
works in interesting ways and (ii) in order to apply decentral-
ized search to information networks, stochastic adaptations
are required. Our work illuminates a way towards using de-
centralized search as a valid model for human navigation in
information networks in future work. Our results are rel-
evant for scientists who are interested in modeling human
behavior in information networks and for engineers who are
interested in using models and simulations of human be-
havior to improve on structural or user interface aspects of
hypertextual systems.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/ Hypermedia—Navigation; H.5.3 [Information In-
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terfaces and Presentation]: [Group and Organization
Interfaces—Web-based interaction]

General Terms
Experimentation, Measurement, Algorithms
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1. INTRODUCTION
In this work, we study the ways in which an established

model for navigating social networks - i.e. decentralized
search - can be applied to model human navigation in infor-
mation networks.

Towards that end, we implement decentralized search as
a model of navigation and evaluate it with a log of human
navigational paths obtained from an online navigation game
based on Wikipedia (TheWikiGame1). In this game, a user
starts at a randomly selected Wikipedia article (a so-called
start page) and is supposed to navigate to another randomly
selected article (a so-called target page) by following tex-
tual hyperlinks emanating from the current Wikipedia arti-
cle only. During the game, each click is captured and stored
in a log. We use a log of ca. 250,000 click paths to ex-
pose users’ navigation behavior and to study factors that
influence users’ decision making during navigation.

In our experiments, we build on insights from Milgram’s
“small world” experiment [14] and on models of navigability;
in particular decentralized search by J. Kleinberg [9], which
we apply to model users’ navigation. In addition, we ap-
ply models and approaches based on hidden metric spaces
introduced by Boguna et al. [2], and explore how users’ nav-
igation behavior on Wikipedia can be modeled with decen-
tralized search using topic hierarchies as background knowl-
edge. The topic hierarchies may be constructed algorith-

1http://www.thewikigame.com



mically from structural properties of the Wikipedia article
network or external metadata about Wikipedia articles.

Research questions: In this paper, we are particularly
interested in exploring answers to the following two main
questions: (i) Is decentralized search - a model originally
developed for social networks - also applicable to information
networks? (ii) And if it is, in what ways does it apply? i.e.
what variation of decentralized search best explains human
navigation behavior on Wikipedia?

To answer these questions, we study different variants
of decentralized search using different mechanisms for ac-
tion selection. Action selection mechanisms for decentral-
ized search can be grouped into two main categories, i.e.
greedy (deterministic) and stochastic greedy (probabilistic)
approaches. Within the stochastic greedy mechanism, we
will investigate three probabilistic action selection strate-
gies, i.e. ε-greedy, softmax rule, and inverse distance rule.
Using these models of navigation, we generate synthetic click
paths and compare them to actual click paths generated by
users.

Contributions: Our work makes the following contribu-
tions: (i) We present and discuss several potential differ-
ences and commonalities between navigation in social and
information networks. (ii) We identify certain configura-
tions of decentralized search that are capable of modeling
human navigation behavior in information networks in valid
ways. (iii) We introduce a novel action selection mechanism
for decentralized search in information networks called de-
caying ε-greedy. This new mechanism is general enough to
be adapted to different kinds of navigation scenarios and
best explains the observed parameters of navigation in our
dataset.

More specifically, we find that human navigation in infor-
mation networks is a two phase process combined of the ex-
ploitation of the known and the exploration of the unknown,
as opposed to search in social networks which largely ex-
ploits the local knowledge of decentralized agents. Our re-
sults suggest that humans either follow specific links on pur-
pose (exploitation) whenever they are confident enough that
those links bring them closer to their particular target, or
they select links almost arbitrarily at random (exploration)
whenever they do not possess enough knowledge to relate
the candidate links to their target. In particular, we em-
pirically measure the ratio between exploitation and explo-
ration in human navigational paths and we find that in our
dataset, exploration accounts for up to 15-20% of clicks and
exploitation accounts for 80-85% on average. These results
are strikingly similar to the α parameter used in Brin and
Page’s PageRank where α is set to 15%. We also investigate
the relation of this ratio to users’ progress during navigation
and find that the ratio of exploration decays as navigation
progresses. In other words, users tend to explore more in the
early phases of navigation games and tend to exploit more
in the later navigation phases as they get more confident
about their position in the network.

The paper is structured as follows: In section 2 we review
the state-of-the-art in this domain. Next we present our
methodology and experimental setup in section 3 and discuss
our results in sections 4, 5, and 6. Section 7 concludes our
paper.

2. NAVIGATION IN NETWORKS
Research on (decentralized) search in social networks was

initiated by the small-world experiment conducted by Mil-
gram [14]. In that experiment, randomly selected persons
from several location in the US were required to pass a letter
to a target person in Boston in a decentralized manner, i.e.
through their social networks. One of the most interesting
results of that experiment was that the average length of the
letter chain was only six, and thus the entire social network
in the US represented a small-world. Apart from the findings
that people in a social network are connected by short chains
of acquaintances, another result of this experiment received
a lot of attention from various researchers. Not only are
humans connected by short chains, but they are also able
to efficiently find these short chains in a decentralized man-
ner. For example, Kleinberg concluded that humans possess
background knowledge of the network structure and that this
knowledge allows humans to efficiently find short paths [8,
9, 10]. Kleinberg represented such background knowledge as
a hierarchy of nodes, where more similar nodes are situated
closer to each other in the hierarchy. Independently, Watts
[20] introduced the notion of social identity as a member-
ship in a number of social groups organized in hierarchies
and showed the existence of efficient decentralized search
algorithms that utilize these hierarchies by simulation. In
[1], Adamic reports of the results of empirical studies in-
vestigating decentralized search in social networks. Adamic
simulated search in real-world networks such as an organi-
zational e-mail network and an online student network. The
simulations were based on Kleinberg’s decentralized search
algorithm with different hierarchies being applied as back-
ground knowledge, e.g., an organizational hierarchy as well
as a hierarchy reflecting the position of a person in the phys-
ical space. Results showed that both of these hierarchies
can be effectively used to support decentralized search. In
addition, Adamic has shown that the performance of a de-
centralized search algorithm depends on the quality of the
hierarchical background knowledge and therefore the hierar-
chies that are used for guiding the decentralized search play
an important role in those network navigation models. In
summary, decentralized search represents a very well stud-
ied theory that can explain navigation in social networks
since the theory has been validated in several experimental
studies after its introduction.

Crucial to all variants of decentralized search is the notion
of distance between network nodes, i.e. there exists a metric
defined on a set of network nodes. According to this distance
function, the decentralized search algorithms are greedy, i.e.
an agent always selects a node with the smallest distance to
a particular target node. Accordingly, those algorithms are
also deterministic because the algorithm always produces
the same navigation sequence between a given start and a
given target node.

In [18], the authors further investigate the notion of the
node distance function by discussing hidden metric spaces.
In such hidden metric spaces, nodes are identified by their
co-ordinates – distance between nodes is their geometric dis-
tance in a particular metric space. To that effect, hierarchi-
cal background knowledge as originally introduced by Klein-
berg may be comprehended as a metric spaces where the
distance is defined as e.g. the shortest path between nodes
in the hierarchy.

One of the original Kleinberg’s suggestions was that de-
centralized search also represents an intuitive model of nav-
igation in information networks, e.g. on the Web. Similarly



Social Networks Information Networks
Agents per search multiple agents single agent
Type of routing decentralized (with local knowledge) centralized (with local knowledge)
Searcher part of the network (endogenous) not part of the network (exogenous)
Routing decisions social intuitions topical intuitions
Local knowledge rich limited
Consultation of candidates costly cheap

Table 1: Potential differences and commonalities between navigation in social and information networks

to search in social networks, navigation in information net-
works is inherently local, i.e. when users navigate they are
only aware of the links emanating from the document cur-
rently displayed at their screens. One can assume that they
apply similar greedy strategies in their navigation towards
the destination document. For example, users might tap into
their intuitions about conceptual similarities and distances
between documents and select the document that has con-
ceptually the smallest distance to the destination document.
Based on these ideas, we have applied decentralized search as
an evaluation strategy for estimating the quality of a hierar-
chy for supporting user navigation in our own previous work.
For example, in [6] we evaluated folksonomy construction
algorithms from a pragmatic perspective, i.e. we evaluated
their efficiency for supporting navigation in social tagging
systems. More recently, in [19] we made first steps towards
validation of decentralized search as a model of navigation
in information networks by comparing deterministic greedy
decentralized search with human click paths in a Wikipedia
navigation game. One of the conclusions was that decen-
tralized search with appropriately constructed hierarchical
background knowledge is more efficient than humans when
they navigate, as decentralized search finds shorter paths
to randomly selected destination nodes on the average as
compared to humans.

In other related work, West and Leskovec [22] performed
a study of user navigation behavior. The authors analyzed
a collection of click paths of users who were playing a nav-
igation game in a network of links between the concepts of
Wikipedia. In their work, they found that user navigation
behavior differs from shortest paths. For example, users typ-
ically navigate through high-degree hubs in the early phase
and then apply content similarity as a criteria for finding
the destination node. In subsequent work [21], the authors
analyzed a number of decentralized search algorithms using
various distance functions and benchmarked them against
their human click corpus. The authors also found that even
simple search strategies such as utilizing node degrees out-
perform human information seeking.

Although these initial findings are very promising and
show that decentralized search may indeed be a first step
in modeling navigation in information networks, they have
also revealed subtle differences between models of navigation
in social and information networks. For example, simple
deterministic greedy model of navigation in a typical case
outperforms human navigation in terms of navigation effi-
ciency. We take this initial observations as a starting point
for studying the differences between navigation in social and
information networks in greater detail.

Table 1 highlights selected differences between navigation
in social and information networks.

Navigation in social networks (c.f. the Milgram ex-

periment [14]) usually involves multiple agents engaging in
a collective search effort where every agent tries to forward
a request (e.g. a letter) to other agents who are presumably
closer to a given target person. In this sense, navigation in
social networks represents decentralized routing, where mul-
tiple agents collectively make routing decisions in sequen-
tial order. The agents themselves are also nodes in the so-
cial network which they are navigating (in other words: the
agents are endogenous to the network). Routing decisions
are based on social intuitions about which other agent most
likely moves the search closer to the target node. At each
step, the corresponding agent has access to local knowledge
about the network only, i.e. knowledge about the nodes
that represent her ego-network (the one-hop neighborhood).
Typically, each agent has rich knowledge about her local so-
cial neighborhood, and she can tap into her intuitions to
contact the right candidate node to move the search for-
ward. However, consulting candidate nodes [12] is usually
costly - one can easily assert that exhaustively contacting all
candidates from the set of candidates would not represent a
feasible choice.

Navigation in information networks (e.g. navigation
on Wikipedia) usually involves just a single agent who tries
to navigate to target pages. In this sense, navigation in infor-
mation networks represents centralized routing, where nav-
igation decisions are made by an autonomous agent. The
agent herself is not part of the information network, she
merely navigates it (in other words: the agents are exoge-
nous to the network). Routing decisions are based on topical
intuitions about which page most likely moves the searcher
closer to the target page. At each step, the agent only has
local knowledge about the network, i.e. knowledge about
the links that are emanating from a particular page (the
one-hop neighborhood). Typically, an agent who navigates
an information network has limited knowledge about the lo-
cal neighborhood for a given node. Yet, the costs for con-
sulting candidate nodes is low, and we can easily see that
exploration of candidate nodes and backtracking to existing
nodes would represent a feasible navigation strategy.

Summary: While navigation in social and information
networks share some interesting properties (e.g. local knowl-
edge of the network, navigation based on intuitions), a num-
ber of interesting differences can be observed. Overall, these
differences suggest that while greedy approaches to modeling
navigation in social networks appear reasonable, in informa-
tion networks they might need to be adapted because of the
stochastic nature of human navigation behavior [7]. These
observations make it interesting to study the ways in which
models developed for navigation in social networks might be
applied to modeling navigation in information networks. We
will outline our methodology towards answering this ques-
tion and our experimental setup next.



3. METHODOLOGY
We adopt decentralized search as a model of navigating

social networks and apply it to Wikipedia. While the orig-
inal proposal for decentralized search is based on a greedy
approach, we will investigate the utility of different action
selection mechanisms. We know from previous research that
navigation on information networks such as the World Wide
Web exhibits high variation [7] which can not be captured
by a deterministic greedy modeling approach. We also know
that such navigation can be modeled via stochastic pro-
cesses. By experimenting with different action selection mech-
anisms, we want to inject different kinds of stochasticity and
find out which one explains actual user behavior best.

3.1 Action selection mechanisms
We will experiment with the following action selection

mechanisms presented in Table 2:
Greedy (baseline): With greedy action selection, the

algorithm always choses the candidate node j with the min-
imal distance distance d(j, t) to the target node.
ε-greedy: With ε-greedy action selection, the algorithm

choses the candidate node j with the minimal distance d(j, t)
to the target node with 1−ε probability, and with probability
ε it choses another candidate uniformly at random.

Softmax rule: With softmax [3, 5], the algorithm choses

a candidate node j with probability p(j) ∝ ecf(j), where
f(j) represents a fitness function calculated from the dis-
tances d(j, t), and c corresponds to an agent’s confidence in
her intuitions. When c is large enough (high confidence),
softmax always choses the candidate node j with the min-
imal distance distance d(j, t), which makes it equivalent to
greedy action selection. However, with small values of c (low
confidence), the algorithm tends to select other candidate
nodes based on f(j).

Inverse distance rule: With inverse distance action se-
lection (c.f [13]), the algorithm choses a candidate node j
with p(j) ∝ f(j)−c, where c again represents a confidence
parameter. The properties of this rule are similar to the
softmax rule - the only difference lies in the probability dis-
tribution for action selection.

3.2 Experimental Setup
TheWikiGame dataset contains almost 800,000 navigation

games. Of these, more than 250,000 are succesful games, i.e.
games where users have reached the target page successfully.
In this paper, we concentrate on the analysis of the successful
games only. To obtain the underlying information network,
we use the April 2012 Wikipedia dump. In this network,
Wikipedia articles are represented as nodes and hyperlinks
between Wikipedia articles are represented as links. The
network contains around 10,000,000 nodes and 250,000,000
edges.

For simulation, we use decentralized search with hierar-
chical background knowledge where action selection mecha-
nisms are configured according to Table 2. As hierarchical
background knowledge, we construct hierarchies from the
Wikipedia network using the algorithm introduced in [15].
The algorithm is based on the idea that many networks tend
to be inherently hierarchically structured. Such hierarchi-
cal structure typically leads to the emergence of observable
structural properties such as power-law degree distributions
and high node clustering (cf. [4]). The authors develop their
ideas by suggesting that each link in a network is either of

a hierarchical type or some other type, e.g. it is a synonym,
or a general association. The algorithm aims to recognize
these hierarchical links – it iterates through all links in the
network and decides, using a simple criteria, if that link is of
a hierarchical or some other type. The hierarchical links are
kept in the network and all other links are removed from the
network. The algorithm decisions are based on a so-called
hierarchical score, which is a measure of the generality of a
node. For each link a hierarchical ratio between hierarchical
scores of two incident nodes is calculated. If the hierarchical
ratio is close to 1 then those two nodes are close in gen-
erality and they are situated in the same hierarchy level –
thus, the link between those two nodes is not a hierarchical
one and is therefore removed from the network. Similarly, if
the hierarchical ratio for a link is close to 0, then those two
nodes are very far away from each other in the hierarchy and
the link is also removed. Technically, the authors define two
thresholds – a high and a low threshold – to decide on link
removal. Thus, a link is removed if the hierarchical ratio
is greater than the high threshold or smaller than the low
threshold. In our experiments, we use a local flow score as
the hierarchical score, which is defined as:

g(i) =
k−i
k+
i

√
k−i , (1)

where k−i is the in-degree of node i, and k+
i is the out-degree

of node i. The term
√
k−i ensures that a node having e.g.

2000 in-degree and 1000 out-degree is rendered more general
than a node having e.g. 2 in-degree and 1 out-degree. Next,
for each link (i, j) we calculate the hierarchical ratio as:

r(i, j) =
min(g(i), g(j))

max(g(i), g(j))
. (2)

If the r(i, j) falls within two thresholds then the link (i, j) is
kept in the network, otherwise it is removed. As thresholds
we choose 0.9 and 0.1 for high and low thresholds respec-
tively (cf. [15]) and extract the hierarchy from the Wikipedia
network. The hierarchy contains around 5,000,000 nodes
and 60,000,000 links.

Next, we apply the constructed hierarchy as the back-
ground knowledge and initialize these different versions of
decentralized search with pairs of start and target nodes.
The number of simulations per configuration corresponds to
the number of successful games (more than 250,000 games)
played on TheWikiGame.

For evaluation, we calculate a series of measures to char-
acterize the ability of different action selection mechanisms
to mimic human behavior. First, we calculate success rates:

s =
|W |
|P | , (3)

where W is the set of node pairs which the simulator suc-
cessfully played and P is the set of all node pairs used for
simulation. Thus, the success rate captures the percent-
age of cases where humans respectively decentralized search
where successful in finding the target. A success rate of 0.9
means that in 90% of cases, the searcher did find the target.
In addition to the success rate we calculate stretch, which is
a measure for the efficiency of navigation. It is calculated
by dividing the lengths of the actual paths h(s, t) by the
lengths of the shortest paths l(s, t) between start and target



Action selection Definition Description
Greedy j = min(M\C) An agent who always follows her intuitions

ε-greedy
j = min(M\C), with P = 1− ε An agent who follows her intuitions with probability 1− ε,
p(j) =

1

|Γ(i)| , with P = ε but who adopts a random strategy with probability ε

Softmax rule
p(j) =

ecf(j)∑
j e

cf(j)
, An agent who follows her intuitions to different extents.

The parameter c sets the extent to which the agent is
greedy or stochastic according to her intuitions.

f(j) = 1− d(j, t)

max
k,l∈V

d(k, l)

Inverse distance rule
p(j) =

f(j)−c∑
j f(j)−c

, An agent who follows her intuitions to different extents.
The parameter c sets the extent to which the agent is
greedy or stochastic according to her intuitions.

f(j) =
d(j, t)

max
k,l∈V

d(k, l)

Table 2: Different action selection mechanisms for Decentralized Search. The following definitions apply: V
is the set of all nodes that is totally ordered under the binary relation < (e.g. node encodings may be sorted),
t is the target node, i is the current node, Γ(i) is the set of all neighbors of i, j ∈ Γ(i) is a candidate node
at node i, d(j, t) is a distance between nodes j and t. Further, M := argminj∈Γ(i) d(j, t) is the argument of the
minimum of the distance function of candidate nodes at node i, and finally C is the set of already visited
nodes.

nodes and then averaging over all nodes:

τ =
1

|W |
∑

s,t∈W

h(s, t)

l(s, t)
. (4)

A stretch τ = 2 means that on average, actual paths
lengths are twice as large as the corresponding shortest paths.

Next, we analyze the distribution of the hop lengths of dif-
ferent simulation variants and compare those to the shortest
path distribution and human hop length distribution. We
quantify the differences between distributions by calculating
Kullback-Leibler divergence DKL [11]. This measure tells
us how different the distributions generated by the models
are from the distributions of actual click path. In informa-
tion theory DKL measures the number of extra bits that is
needed to code the real distribution with the codes derived
from the model distribution. Thus, lower values of DKL

represent better approximations of the real distribution, i.e.
the model models the reality more closely. Kullback-Leibler
divergence is calculated as:

DKL(p||q) =
∑
x

log2

(
p(x)

q(x)

)
p(x) (5)

Typically, we say DKL(p||q) is the Kullback-Leibler diver-
gence of q from p, where p is the real distribution and q is
the model distribution.

4. RESULTS
We are organizing the presentation of our results around

the two leading research questions of this paper:
(i) Is decentralized search - originally developed in the

context of social networks - also applicable to information
networks?

Figure 1, 2 and 3 show the results from our experiments.
Figure 1 depicts success rates and stretch depending on
different action selection mechanisms. While success rates
seem to be mostly insensitive to the different mechanisms

and parameters, we find that stretch is highly sensitive to
the choice of the parameter. For example, from Figure 1a
we can see that a greedy decentralized search model (with
ε = 0) does not explain human click paths very well. With
an ε = 0.15, the stretch generated by ε-greedy matches the
stretch of human click paths much better (depicted by the
intersection of the green and the pink line). These results
suggest that greedy search - which was shown to explain nav-
igation in social networks well - does not fully explain navi-
gation in information networks. In particular, navigation in
information networks seems to be a more stochastic process
where phases of deterministic greedy behavior are seamlessly
combined with random probabilistic behavior. Thus, during
deterministic phases, users seem to have a high confidence
into their intuition about the network and exploit them in
a greedy manner. This helps to reduce the conceptual dis-
tance to the target page at each step. On the other hand,
during random phases, users do not posses sufficient intu-
itions or are not confident enough in their intuitions about
the network and therefore switch to exploration of their im-
mediate neighborhood, apparently selecting links on random
until they arrive at a page where their intuitions can again
lead them towards the target page, and they switch again
to the exploitation phase. Concerning the applicability of
decentralized search, we can conclude that injecting certain
levels of randomness in the baseline (greedy) decentralized
search models seems to produce global navigation proper-
ties such as success rate and stretch that are close to human
performance.

(ii) In what ways does decentralizes search apply? i.e.
what variation of decentralized search best explains human
navigation behavior on Wikipedia?

To answer the second research question we turn to a more
detailed analysis of the properties of simulated navigation.
We are now interested in the underlaying distributions that
generate the global properties discussed previously. Thus,
Figure 2 depicts the hop length distributions of different ac-
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Figure 1: Success rate and stretch of different navigation models. Across all action selection mechanisms
(ε-greedy, Softmax, Inverse distance rule) we can see that the success rate of humans and decentralized
search is comparable (close to 1.0, see the two lowest horizontal lines above). Interesting differences emerge
when comparing the stretch of human clicks (upper horizontal line) with the stretch of different action
selection mechanisms. Subfigure 1a shows that with an ε = 0.15, human stretch can be approximated well.
Greedier strategies (lower epsilons) tend to reduce stretch to the extent that decentralized search significantly
outperforms humans, while more random strategies (higher epsilons) tend to increase stretch. The same holds
- with different parameters and to different extents - for Softmax 1b and the Inverse distance rule 1c.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5  10  15  20  25  30  35  40  45  50

F
re

qu
en

cy

Hops

Shortest path
Humans

Greedy(ε=0)
ε=0.5
ε=0.1

ε=0.15
ε=0.2

ε=0.25
ε=0.3
ε=0.5

(a) ε-greedy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5  10  15  20  25  30  35  40  45  50

F
re

qu
en

cy

Hops

Shortest path
Humans

Greedy(c=70)
c=35
c=40
c=45
c=50
c=55
c=60
c=65

(b) Softmax

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5  10  15  20  25  30  35  40  45  50

F
re

qu
en

cy

Hops

Shortest path
Humans

Greedy(c=20)
c=5
c=6
c=7
c=8

c=10
c=12
c=15

(c) Inverse distance rule

Figure 2: Hop length distributions generated by different navigation models. Across all action selection
mechanisms (ε-greedy, Softmax, Inverse distance rule) we can observe that our models tend to produce hop
lengths distributions (dashed lines) that coarsely approximate the hop length distribution of human paths
(solid green line). The hop length distribution of the shortest paths (solid red line) shows the topological
baseline. While the distributions of models and human paths are similar, we can also observe that the models
tend to be more efficient, i.e. on average, they find the targets faster than humans. For example in 2a, ε-
greedy with ε = 0.1 or 0.15 exhibits a hop length distribution very close to the hop length distribution of
humans, while ε = 0.5 or ε = 0 (i.e. greedy decentralized search) outperform humans. Although some of the
hop length distributions of the simulator (c.f. the quantitative analysis with Kullback-Leibler divergence in
Figure 3) are very close to the hop length distribution of the humans one specific difference can be observed.
The human hop length distribution is shifted to the right by 1, i.e. the human distribution has its mode at
4, whereas all simulator distributions have their modes at 3. Similar trends can be observed across different
action selection mechanisms 2b and 2c.

tion selection mechanisms. Their differences are quantified
by the Kullback-Leibler divergence between human distri-
butions and model distributions as depicted in Figure 3. A
striking result from this analysis is that in a typical case,
the divergence between simulator hop length distribution
and human hop length distribution is only minimal. For ex-
ample, ε-greedy strategy with an ε = 0.15 has DKL = 0.22.
We can interpret this result in the following information-
theoretic way: if we would encode human hop lengths with
the code defined by the ε-greedy strategy with the ε = 0.15,
we would on average need only 0.22 bits more than if we

would encode the human hop lengths with the code defined
by the real distribution.

Figure 3 shows what combination of action selection mech-
anism and parameter best approximates the hop lengths dis-
tributions of human click paths. We see that a combination
of ε-greedy with an ε = 0.15 minimizes the Kullback-Leibler
divergence of model distributions from human distributions.
This means that ε-greedy best explains human navigation
with regard to hop lengths behavior. Intuitively, we can
say that a user tends to exploit her intuitions (background
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Figure 3: Similarity of hop length distributions between models & humans, and models & shortest path.
Using the hop length distributions from Figure 2, we calculate the Kullback-Leibler divergence of model
distributions from human distributions (green line) and model distributions from shortest path distributions
(red line) depending on different action selection mechanisms and parameters. This explains what parameters
produce hop length distributions that are closest to the hop length distributions of humans. In 3a we can
see that for ε = 0.1, 0.15 or 0.2, the KL divergence is minimal, which means that the models represent a good
fit with human click behavior. A similar trend - with different parameters - can be observed for Softmax 3b
and the Inverse distance rule 3c.

knowledge) 85% of the time, and explores new options 15%
of the time.

Another interesting result is that the simple ε-greedy strat-
egy performs even slightly better than more complex action
selection strategies such as softmax or inverse distance rule.
We believe that the reason for this is that human naviga-
tion behavior can be fairly well modeled as a discrete pro-
cess combined of exploration and exploitation phases. In
other words, humans either explore or exploit the network,
whereas softmax and inverse distance rule suggest that hu-
mans always possess certain intuitions about the network
but with varying confidence levels at different stages of nav-
igation.

5. A NOVEL MECHANISM FOR ACTION
SELECTION

Although these first experimental results are very promis-
ing, we can also observe an interesting deviation of the sim-
ulator hop length distributions from human hop length dis-
tribution. While the mode of the human hop length distri-
bution is at 4, all simulator distributions have their mode at
3. This is likely caused by the fact that humans rarely find
the target node as early as the simulator (e.g in 2 steps). In
fact, humans are able to find the target node only in 5.7% of
cases in two hops in our dataset, whereas the best perform-
ing action selection strategy ε-greedy with ε = 0.15 does the
same in 17.3% cases. Thus, the simulator is by large more
efficient in early navigation phases. This leads us to the
conclusion that humans do not possess sufficient intuitions
in the beginning of the navigation game, and as the game
progresses, their intuitions become better which allows them
to close in on the target node. We believe that there may
be two reasons for such a behavior.

First, as the authors of [22] found that the early phases of
human navigation are dominated by node degrees – humans
tend to reach a high-degree node very quickly and then con-
tinue from there by utilizing the node similarity until they
reach the target. A possible explanation for the human in-
efficiency in the first few navigation steps may be that the
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Figure 4: Rates of exploration over degrees (left)
and hop length (right). The relation between ex-
ploration probability and node degree seems to be
non-linear, i.e. exploration probability is not pro-
portional to node degree as our experiments confirm
(Figure 4a). On the other hand, Figure 4b clearly
shows that exploration rate drops with each new
click as humans orient themselves better in the net-
work.

willingness to explore is proportional to the node degree, e.g.
humans possess fewer intuitions and less confidence in their
intuitions on pages with more links and therefore, they ex-
plore more on such pages.

Second, humans may need a few initial clicks to orient
themselves in the network and therefore explore more in
early phases. This is an intuitive explanation because the
navigation game setup lets humans start on a randomly se-
lected page, which is typically not related to the target page.
Thus, at the beginning of navigation, humans tend to ex-
plore the network to a larger extent, and once when they
have oriented themselves in the network, they tend to be
more exploitative in their search for the target node.

To test those two hypothesis we investigate how explo-
ration and exploitation depend on the node degree and the
current hop length, i.e. how those two features help in clas-
sification of a click into an exploitation or an exploration
class. To that end, let i be the current node in a naviga-



tion sequence. We define a click on node j to belong to the
exploitation class if node j has the minimal distance to the
target node, i.e. j ∈ M , where M := argminj∈Γ(i) d(j, t).
Otherwise if the distance of the selected node j to the tar-
get node is greater than the minimal distance we define that
click as exploration click.

Figure 4 shows the exploration probabilities of a click de-
pendent on node degrees and the current hop length. The
relation between node degree and exploration probability
seems to be a non-linear one – a simple model of exploration
that is proportional to the node degree can not capture that
relation. Indeed, we performed a few experiments where we
set varied ε in proportion with node degree and could not ob-
serve any improvement in our measures in comparison with
the standard ε-greedy action selection. On the other hand,
relation between hop length and exploration probability is
much simpler and follows our previous intuition. Therefore
we turn our attention to modeling ε as a function of the
number of pages that users visited so far.

Decaying ε-greedy action selection: To further im-
prove the validity of the models based on these observations,
we propose a new action selection mechanism which we call
decaying ε-greedy model. The mechanism is based on a de-
cay function that adapts ε at every step during navigation.
The decay function can take numerous forms, in this work
we experimented with a decay function that starts with a
given ε0 (e.g. ε0 = 0.8) and then decays during navigation
by a certain factor λ (e.g. λ = 2). In general, we define ε as
the function of the hop length t in the following way:

ε(t) = ε0λ
−t. (6)

With the exemplary parameters from above, decaying ε-
greedy would use the following epsilons εt at step t during
navigation: ε(0) = 0.8, ε(1) = 0.4, ε(2) = 0.2, and so on
and so forth modeling the increase in human intuition about
the network from click to click. Note that this approach is
fairly general and can be easily adopted to other naviga-
tion settings. For example, suppose that a user arrives on
Wikipedia from a search engine and lands on a page that
is not completely random, i.e. it is - to a certain extent -
already related to a given target page. Then, we can easily
model this situation by selecting a lower value for ε0 (e.g.
0.4) and account for the fact that the landing and target
page are related.

As we see in Figure 5, the decaying ε-greedy strategy with
λ = 2 further improves the validity of decentralized search,
e.g. for ε0 = 0.9 we observe a perfect match of the success
rate and stretch to those of the humans and with DKL =
0.05 the distributions are almost identical.

For the next test that we perform we create a new hi-
erarchy for the background knowledge. We apply the same
algorithm as before but set new threshold, i.e. we set 0.6 and
0.3 for the high and low threshold, respectively. The newly
constructed hierarchy posses fewer nodes (about 4,000,000)
and links (about 20,000,000) as previously (because we ap-
ply a more strict criteria for hierarchical links and more links
are therefore removed from the network). We observe sim-
ilar behavior as before – the simulator produces almost a
perfect match in success rate and stretch for ε0 = 0.7 and
ε0 = 0.8 with DKL = 0.04 and DKL = 0.03, respectively
(see Figure 6).

We have the following explanation for slightly lower values
for ε0 in this experiment – the hierarchy is smaller, and it is

more difficult for the simulator to find its way towards the
target node if it drifts too much away from the greedy path
in the exploration phase. When the hierarchy is larger, the
simulator has a larger background knowledge which allows
it to find its way back to an optimal path even from very
far and distant places. Thus, this leads to the conclusion
that, although ε0 also depends on the size of the background
knowledge the proposed mechanism is robust, general, and
can account (with a proper parameter configuration) not
only for different starting conditions but also for differences
in the applied background knowledge.

6. DISCUSSION
Our results suggest that while simple (greedy) decentral-

ized search represents an intuitive model for navigation in
information networks, it does not fit human behavior well.
In this section, we want to leverage the results from our
experiments to revisit the differences between navigation in
social and information networks laid out in Table 1. What
are those differences exactly and how can they be explained?

Based on our experiments, we can draw the following con-
clusions:

Complete vs. Incomplete knowledge: In social net-
works, humans in general have good knowledge about their
ego-network (the set of candidates that can directly be reached
by them). They can exploit this knowledge when decid-
ing who the best candidate for forwarding a letter would
be. In information networks, humans might have limited
or no knowledge about the links that are emanating from a
particular document, and therefore their selection in many
cases might be completely arbitrary. In our models we ac-
counted for this situation by injecting randomness into the
navigation process, i.e. with a probability ε(t) the models
select a page from the candidate pages uniformly at ran-
dom. Moreover, with ε decaying with each navigation step
we account for humans increasing their orientation sense as
they progress through the network. Also as our experiments
suggest different starting pages and their relatedness to the
target page, as well as the size of the background knowledge
seem to play an important role in the navigation and the
interplay between exploitation and exploration.

Exploration vs. Exploitation: We come to the conclu-
sion that in information networks navigation is a combina-
tion of modes which consist of an orientation (or exploration)
mode and an goal-seeking (or exploitation) mode. In other
words, whenever the users lack the knowledge to identify the
best candidate node they inevitably - because of low cost in-
volved in the process - explore the network to find another
node where their knowledge allows them to switch again to
a goal-oriented exploitation mode of navigation. Thus, our
experiments not only provide empirical evidence that human
navigation is a combination of exploitation and exploration
modes, they also provide an estimate of the ratio between
these two modes. In our data, exploitation dominates explo-
ration by a factor of ca. 1 : 7. The former is adopted when-
ever humans posses (or believe to posses) enough knowledge
to select an optimal link that brings them closer to the des-
tination, and the latter is adopted whenever humans are not
sure about what link would bring them closer to the desti-
nation.

Similar observations have been made in past reserach, al-
though on a more theoretical level. For example, in the
framework of information foraging theory [17] Pirolli pos-
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Figure 5: For a particular parameter configuration (λ = 2, ε0 = 0.9) success rate and stretch of the decaying
ε-greedy match those of humans. The simulator exhibits more variance in the early navigation phases and is
less efficient in the first few navigation steps than e.g. the standard ε-greedy. This renders the hop length
distribution of the decaying ε-greedy more similar to the human hop length distribution, e.g. the hop length
distribution for the best performing configuration is shifted to the right in a similar way as the human hop
length distribution and has its peak at 4. This is also quantifiable by Kullback-Leibler divergence, which for
the best configuration is only DKL = 0.05.
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Figure 6: With a smaller hierarchy decaying ε-greedy still matches humans to a great extent – the action
selection mechanism is robust and can model different starting conditions, as well as differences in the
background knowledge.

tulates that when users explore information structures they
constantly assess the quality of available links and then fol-
low the most promising links to satisfy their information
need. The cues that indicate the possibility to find more and
useful information are sometimes called information scent
[16]. According to the theory user behavior in information
systems is guided by the constant estimation of the cost and
value of information structured in patches in respect to the
current user information need. Principally, when the value
of information is high then the users exploit information con-
tained in the current patch and whenever that value is low
and to the same time the cost of leaving the current patch is
also low the users explore the available patches to find one
with high information value.

Summary: In information networks, humans appear to
act greedy if they think they have good intuitions about the
next click (high confidence), and they act randomly if they
think they lack good intuitions. The extent to which they
lack good intuitions can be modeled with the parameters
introduced (e.g. ε). In this work, our main interest was to
validate the models with regard to success rate, stretch, and
hop length distribution. We leave the validation of other

aspects of human navigation (e.g. comparing the extent
to which the paths generated by models are semantically
similar to the paths generated by humans) to future work.

7. CONCLUSIONS
To the best of our knowledge, this is the first work to in-

vestigate the extent to which decentralized search - a model
that has been originally developed for navigation in social
networks - can be applied to information networks.

The main contributions of this work are three-fold:
First, we identify several potential differences and com-

monalities between navigation in social and information net-
works. These differences suggest that in order to apply de-
centralized search to model human navigation in information
networks, adaptations are necessary. This has led us to the
design of a series of principled experiments that investigated
the validity of different variations of decentralized search.

Second, we have conducted experiments geared towards
comparing different action selection mechanisms and corre-
sponding parameters for decentralized search. In this experi-
ments, we have identified certain configurations of decentral-



ized search that are capable of modeling human navigation
behavior in information networks in valid ways.

Third, we introduce a novel action selection mechanism
for decentralized search in information networks called de-
caying ε-greedy. This model is based on a decay function
that adapts ε at every step during navigation. We find that
this new model is (i) general enough to be adapted to differ-
ent kinds of navigation scenarios and (ii) best explains the
observed parameters of navigation in our dataset.

Subsequent research can build on these contributions and
use variations of decentralized search - and corresponding
parameters that need to be adapted to given settings - as
a valid model for human navigation. Thereby, our results
are relevant for scientists who are interested in modeling
human behavior in information networks and for engineers
who are interested in using models and simulations of human
behavior to improve on structural or user interface aspects
of hypertextual systems.

In future work, we believe that it would be interesting to
conduct comparative studies of navigation in a series of other
information networks. This would allow us to - for example
- understand the extent to which the identified parameters
(e.g. ε0 or λ) are specific to our Wikipedia setting, or are
universal. Other future work could focus on quantifying
the potential differences and commonalities between social
and information networks in comparative empirical studies.
Finally, we hope that our work sparks an interest to further
develop and use decentralized search as a tool for modeling
human behavior in hypertextual systems.
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