Using Formal Concept Analysis to Construct and Visualise Social Hierarchies of
Software Developers

Michel Wermelinger!, Yijun Yu'! and Markus Strohmaier

2

! Department of Computing and Centre for Research in Computing, The Open University, UK
2 Knowledge Management Institute, Graz University of Technology, and Know-Center Graz, Austria

Abstract

Interest in the human aspects of software engineering
has grown in the past years. For example, based on activity
logs in software artefact repositories, researchers are rec-
ommending who should fix a bug for a certain component.
However, existing work largely follows ad-hoc approaches
to relate software artifacts to developers and rarely makes
those socio-technical relations explicit in a single structure.
In this paper we propose a novel application of formal con-
cept analysis, in order to overcome those deficiencies. As a
case study, we construct and visualise different views of the
developers who fix and discuss bugs in the Eclipse project.

1 Motivation

Software engineering is inherently a socio-technical en-
deavour, as pointed out by Conway [4]) among others.
The rise of global software development projects and the
research opportunities provided by the rich open source
repositories have led to an increased interest in the social
side of development, as the ICSE workshops on socio-
technical congruence and human aspects of software engi-
neering testify.

Although much work exists on exploring the information
about developers and other contributors contained in soft-
ware repositories, there is actually not much work on explic-
itly showing the overall socio-technical relations between
people and software artifacts in an explicit way. Sometimes,
the relations are implicit and given to users one at a time
(e.g. based on the file the user is editing). Other times, the
socio-technical relations are just an intermediate step to ob-
tain further relations between only artifacts or only people
(e.g. who collaborates with whom), and only those relations
are shown. In the few cases where socio-technical relations
are explicitly shown, they are usually drawn as graphs and,
depending on the layout algorithm, it may not be easy for
analysts to visually recognise any relevant connections, e.g.

which developers worked on most source code files. One
of the underlying reasons for this state of affairs is that due
socio-technical relation graphs do not scale well due to the
large amount of artifacts and people involved in most soft-
ware projects.

We therefore asked ourselves if socio-technical relations
could be presented in a different way, that would be explicit,
compact, and yet intuitive. To avoid reinventing the wheel,
we looked for existing and well-established network tech-
niques and tools that could help reduce the learning curve
for those wishing to analyse such relations. We decided to
try applying formal concept analysis in order to automati-
cally construct and visualise social structures in a more hi-
erarchical way, which would immediately lead the user to
the most important developers, namely those appearing at
the top of the hierarchy. To put our idea to the test, we did
an exploratory study of the social hierarchy of those devel-
opers that discuss and fix bugs in Eclipse. We constructed
various hierarchies, both over the same and different Eclipse
releases, in order to obtain, on one hand, different views of
the same social reality and, on the other hand, the same view
over an evolving social reality.

2 Related work

There has been much work on mining social networks of
developers from source code [5, 6], e-mail archives [3], and
bug reports [1]. However, all these works have a different
aims from ours. Whereas we are interested in obtaining a
general approach to explicitly construct and visualise socio-
technical relations that will enable different questions to be
answered, the cited researchers build custom graphs for the
particular research question at hand and those graphs are
either implicit (i.e. not shown to the user) or only have one
type of nodes (either artifacts or people).

Nevertheless, we have taken an important lesson from
the cited works: obtaining social structures from configura-
tion management systems (like CVS) or from source code
may leave many contributors out of the picture as they do

not have commit rights on the repository or they do not con-
tribute by writing code, but instead by discussing on e-mail
lists, for example.

Formal Concept Analysis (FCA) is a graph-theoretic ap-
proach to categorization based on mathematical order and
lattice theory [9]. Given a set of objects O, a set of at-
tributes A, and a matrix stating which attributes each ob-
ject has, FCA will first construct all concepts, i.e. all pairs
(0,a) such that o C O is the set of objects that share the
attributes a C A. The objects o are the extent of the con-
cept, whereas the attributes a are the intent of the concept.
The concepts will then be organised into a lattice, follow-
ing the intuition that general concepts have larger extents.
Formally, {(0,a) < (o/,a’) if o C o’. Since objects o’ share
attributes a’, the subset o will obviously share the same at-
tributes and possibly more. Hence, if (0,a) < (0’,a’) then
a 2 d'. In other words, as we move upwards in the lattice,
the extent increases and the intent decreases.

FCA has been used in software engineering mainly to
complement traditional static code analysis in order to ob-
tain different relationships between code artifacts [7], e.g.
to classify them into cross-cutting higher level features
(concepts).

3 Proposed Approach

The novel approach we propose is to view software ar-
tifacts as objects and people as attributes. In that way, the
concepts computed by FCA will be clusters of artifacts that
are associated to the same people. Moreover, the lattice will
implicitly correspond to a hierarchy, in which those people
associated to more artifacts will appear in the top levels of
the lattice, thus indicating their importance in the project.
In other words, FCA will give us for free the clustering of
artifacts and people, an ordering of those clusters, and an
intuitive view of such ordering. Moreover, computing the
lattice over different releases of the system will allow us to
see how the clusters and their ordering evolves. All this, put
together, can then be used for various purposes.

For example, consider that the objects are the source
code files, the attributes are the developers, and the ma-
trix states which developers worked on which files for a
give period of analysis. Hence, each concept will group
all files that, over that period analysed, were changed by the
same group of developers. The top level concepts will show
who are the developers working on most files and hence are
likely to have the widest knowledge about the system. In-
versely, the low level concepts will show those developers
that specialise only on a few files and hence may have more
in depth knowledge for those parts of the source code.

Furthermore, concepts with small intents (i.e. few de-
velopers) point to parts of the system that may be at
risk of becoming legacy, if those developers leave the

project. However, due to the way the concepts are or-
dered by FCA, a manager can quickly see which devel-
opers are likely to be the best replacement for those leav-
ing, simply by looking at the intents of the immediate
children of the critical concept. To see the reason, con-
sider a concept ¢ = ({fileA, fileB, fileC}, {John}).
If John leaves the project, who can quickly replace him?
All the immediate children ¢; < c¢ in the lattice have
an extent that most closely matches the extent of c,
e.g. ¢ = (fileA, fileB},{John, Mary} and c; =
({fileA, fileC},{John, Peter}. Hence, the intent of
each ¢; includes those developers (besides John) who will
have to become acquainted with the least number of files in
order to match John’s current expertise. They are thus the
potentially best candidates to replace John in the project.

4 Exploratory Study

To explore the application of FCA to uncover social hi-
erarchies, we chose to use bug reports in order to avoid the
limitations associated to using source code or a configura-
tion management system (Section 2). We selected Eclipse
as case study because: we already had some experience
mining it [8]; a Bugzilla database is available' for a suffi-
ciently long history for social changes to become apparent;
the lead of IBM allows some social continuity to be traced
throughout history.

First we extracted, for each of the 101966 bug reports
processed, its unique id, the Eclipse component for which it
was reported, and the people associated to the bug: the re-
porter, the current assignee (i.e. the person fixing the bug),
and the (zero or more) past discussants of the bug. Each dif-
ferent role can be understood to cover a different aspect of
communication in software development. All these stake-
holders are given as email addresses in the database. We
have not yet filtered e-mail aliases, as this is just a prelim-
inary exploration of the data set. However, as a rough esti-
mate we computed how many e-mails shared the user name
but had a different domain name (e.g. user@ibm.com
and user@gmail . com) and found this to be the case for
7% of reporters and discussants, and for 3% of assignees.

With this information we constructed a graph consisting
of three types of nodes: people P, bugs B and software
components C. There is a directed arc from person p to
bug b, if p reported, worked on, or discussed b. There is a
directed arc from b to c if bug b was reported for compo-
nent c. Next we created a bi-partite graph PC'": an arc from
person p to component ¢ will be weighted with the number
of bugs of c that p is associated with, in other words, the
number of paths from p to c¢ in the original P BC' network.

We repeated the construction of the PBC and PC net-
works for several releases of Eclipse, selecting for each re-

"http://msr.uwaterloo.ca/msr2008/challenge

lease all bugs reported up to the release’s date. The cumu-
lative effect over releases allows us to see which developers
become more involved (i.e. are associated to more compo-
nents) and which ones remain at the same level.

To make a meaningful analysis, it is necessary to avoid
‘noise’ due to people that had only a very small intervention
in the project. We therefore introduced a threshold k: arcs
with a weight less than £ will be removed from the PC
network, and so will any nodes that become detached.

We used awk and the relational calculator Crocopat [2]
to write scripts that, given a subset of the three roles, a re-
lease number, and a value for k, will output a comma sep-
arated value representation of the node adjacency matrix of
PC (k) for those people that fulfill the given roles. This out-
put file is fed into the FCA tool ConExp? (short for Concept
Explorer) to generate the concept lattice.

For example, the lattice for PC'(10) at release 1.0, and
only taking assignees into account, is represented in Fig-
ure 1. Because of the way concepts are ordered in a lat-
tice, ConExp uses reduced labelling to avoid cluttering
the diagram, i.e. it only shows for each concept the ob-
jects (resp. attributes) the concept has in addition to its
descendants (resp. ancestors). For example, the extent
of the concept labelled with assignee Kai-Uwe Maetzel is
just {platform:ui,jdt:ui}, the union of the extents
of the descendants. Similarly, the intent of the concept la-
belled with object jdt :ui is {Kai-Uwe Maetzel, André
Weinand, akiezun, ..., Dirk Baeumer}, the union of its an-
cestors’ attributes and its own.

We point out that a static screenshot does not do justice
to ConExp, which is an interactive tool that allows users to
properly explore the lattice. For example, pop-up windows
can show the complete extent of any node, without users
having to do the union in their head. It is also possible to
hide the object or attribute labels or drag them to the side,
to make the lattice less cluttered.

Returning to Figure 1, we can see that there is actually
no proper hierarchy, the lattice being rather flat: most de-
velopers were assigned to a single component. The excep-
tions are Kues, Radloff, Maetzel, Weinand, and Klicnik,
each one having worked on two components. Some com-
ponents have only one single developer assigned to more
than 10 bugs, while others have six or more. This might be
just an indication that some components require many more
bug fixes than others, but it might also be cause for concern
if those single developers with expertise for a given compo-
nent leave the project. The use of FCA to cluster developers
around artifacts can quickly point out potential problematic
hotspots with too many or too few developers, but whether
there is actual cause for concern can only be established
by consulting other information sources. Last but not least,
Figure 1 clearly shows some geographic clustering: all IBM

Zhttp://sourceforge.net/projects/conexp

Switzerland developers handle bugs in jdt :ui and IBM
France only handles bugs in jdt : core.

If we now fast forward to the date of release 3.0, and
increase the threshold to 100 bug reports in order to take
the accumulation of bugs into account, but keep looking at
the same role (assignees), we obtain a lattice (omitted for
space constraints)that, interestingly, has not changed much
in certain respects. For example, the geographical division
of labour is largely kept, and most developers still specialise
on a single component, but for example Daniel Megert has
‘climbed up the social ladder’ and moved to the top level of
the hierarchy, contributing to at least 100 bug fixes for each
of three components. It is also interesting to see that the
three top bug handlers for plat form:debug also deal
with platform:ant and jdt : debug which may point
to certain particular characteristics of those components.

Finally, keeping the threshold and release but switching
to the discussant role, we get a completely different lattice
that has fewer objects and attributes than the assignee hi-
erarchy. Moreover, a quick browsing confirms that the ac-
tive discussants are largely a subset of the active develop-
ers. Together, these facts imply that a developer does not
discuss all bugs they are assigned to. Hence, only few peo-
ple discuss more than 100 bugs for a single component and
therefore less people and components appear in this lattice.
For example, Kai-Uwe Maetzel, who heavily contributed to
two components, does not appear in the discussant hierar-
chy. It is also interesting to note that most developers do
not just discuss the bugs of the components they specialise
in. For example, John Arthorne and Erich Gamma heavily
discuss plat form:ui bug reports, besides those for the
components they fix. This may point to tight dependencies
between those pairs of components.

5 Concluding remarks

This paper makes two contributions: a new idea, namely
the novel application of formal concept analysis (FCA)
in order to obtain social hierarchies, and some emergent
results about the Eclipse project. The results so far are
promising about the kinds of information and relationships
that are easily apparent from looking at the various lattices
we constructed, showing different views of the same re-
lease or comparable views of different releases. General
socio-technical evolution patterns can’t be formulated about
Eclipse’s overall development at this point of our prelimi-
nary exploration, but we will continue our study.

We do not claim that lattices should replace the more
common ‘flat’ social networks seen in existing work, be-
cause it does not always make sense to organise data in a
hierarchical way. However, using FCA has several funda-
mental advantages over the bi-partite or nested graphs used
so far, which usually have one node for each artefact and

kent_johnson@ca.ibm.com

Jjerome_lanneluc@fr.ibm.com ([lynne_kues @us.ibm.com
philippe_mulet@fr.ibm.com knut_radloff@us.ibm.com

david_audel@fr.ibm.com

olivier_thomapn@ca ibm.com

'

1
k 1
darin_swanson@us.ibm.com |\ i
eclipse@szurszewski.com
darin_wright@ca.ibm.com
Jared_bumns@us.ibm.com
jdtdebug

[platformiresources |
jeff_mcaffer@ca.ibm.com =~
john_arthorne@ca.ibm.com
debbie_wilson@ca.ibm.com
dj_houghton@ea.ibm.com

T
| | kai—uwe_maetze\@ch.ibm.com|

michael_valenta@ca.ibm.com
kevin_mcguire@ca.ibm.com
Jean-michel_lemieux@ca.ibm.com
jame oody@ca.ibm.com
platform:team

andre_weinand@ch.ibm.com
platform:compare

platform:scripting
platform:update

- ".
felipe_heidrich@ca.ibm.c platiorm:swt

grant_gayed@ca.ibm.com
carolyn_macleod@ea.ibm.com
steve_northover@ca.ibm.com
veronika_invine@ca.ibm.com
mike_wilson@ea.ibm.com

silenio_quarti@ca.ibm.com

.
platform:ui

aivine@ca.lhm.com
unknown@eclipse.org
kevin_haaland@ca.ibm.com
simon_arsenault@ea.ibm.com
ryan_cooper@oti.com
nick_gdgar@ca.ibm.com

__--‘-‘_’- H
: |
= ; .‘
;! !
'

—n\ s
I y Klicnik@eca.bm.com
i !
‘I platform:userassistance N

[fatur] platform:ant

akiezun@mit.edu
claude_knaus@oti.com
daniel_megert@ch.ibm.com
martin_aeschlimann@ch.ibm.com

rodrigo_peretti@ca.ibm.com

pwebster@ca.ibm.com
tod_creasey@ca.ibm.com

erich_gammag@ch.ibm.com
dirk_basumer@ch.ibm.com

eduardo_pereira@ca.ibm.com
randy_giffen@oti com

Figure 1. Social hierarchy of assignees at release 1.0 with £ = 10

person.

1. By clustering multiple artifacts and people into the
same node, lattices are much more compact than the
corresponding graphs.

2. By merging artifacts and their associated people into
the same concept, the socio-technical relations become
much clearer than in a bi-partite graph that requires lots
of arcs to depict the same relations.

3. Lattices have a systematic layout that intuitively maps
the vertical dimension to our mental expectations
about hierarchies, thereby reducing the learning curve
necessary to meaningfully explore the lattices. By con-
trast, understanding a bi-partite graph (e.g. finding the
most important people) may be difficult due to the lay-
out algorithm used.

4. The approach is general and not dependent on the arti-
facts considered and how they are associated to people.
By contrast, in existing approaches the graphs have
different semantics and are visualised differently de-
pending on the artifacts and socio-technical relations
analysed.

We therefore hope that not only developers and man-

agers will find this flexible approach of relating software
artifacts and people useful to solve practical questions in
their daily work (e.g. who should replace someone leaving
the project), but that it will also help researchers to further

explore and make explicit the deep socio-technical relation-
ships that exist in software engineering.

References

(1]

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proc. 28th Int’l Conf. on Software Engineering, pages
361-370, 2006.

D. Beyer, A. Noack, and C. Lewerentz. Efficient relational
calculation for software analysis. /[EEE Trans. Software Eng.,
31(2):137-149, 2005.

C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu.
Chapels in the bazaar? Latent social structure in OSS. Pre-
sented at the 1st Workshop on Socio-Technical Congruence,
Leipzig, Germany, 2008.

M. Conway. How do committees invent. Datamation,
14(4):28-31, 1968.
C. de Souza, J. Froehlich, and P. Dourish. Seeking the

source: software source code as a social and technical arti-
fact. In Proc. Int’l ACM SIGGROUP Conf. on Supporting
group work, pages 197-206. ACM, 2005.

J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In Proc.
21st Int’l Conf. on Software Engineering, pages 85-95. IEEE
Computer Society Press, 1999.

P. Tonella. Formal concept analysis in software engineering.
In Proc. 26th Int’l Conf. on Software Engineering, pages 743—
744. IEEE Computer Society, 2004.

M. Wermelinger, Y. Yu, and A. Lozano. Design principles in
architectural evolution: a case study. In Proc. 24th IEEE Int’l
Conf. on Software Maintenance, 2008.

R. Wille. Formal Concept Analysis as Mathematical Theory
of Concepts and Concept Hierarchies, pages 1-33. 2005.

