707.000
Web Science and Web Technology
„Overview and Motivation“

Instructors:
Markus Strohmaier and Denis Helic

Markus Strohmaier
Univ. Ass. / Assistant Professor
Knowledge Management Institute
Graz University of Technology, Austria

e-mail: markus.strohmaier@tugraz.at
web: http://www.kmi.tugraz.at/staff/markus
Web Science and Web Technology

• Welcome

• Motivation
• Introduction of Instructor and Teaching Assistants
• How this course is organized (and how you obtain a grade)
• Introduction to the course
• Some course highlights
Accepted as a poster: “An Architecture for Wide Area Hypertext”, Hypertext ’91 Poster Abstract, SIGLINK Newsletter

Full paper rejected at HT’91

http://www.informatik.uni-trier.de/~ley/db/conf/ht/ht91.html
In Spring 2008 ...

[Kaminsky] was looking at an error coded into the heart of the Internet's infrastructure. This would allow him to reassign any Web address, reroute anyone's email, take over banking sites, or simply scramble the entire global system. The question was: Should he try it? "Oh shit," he mumbled. "I just broke the Internet."

"The first thing I want to say to you," Vixie told Kaminsky, trying to contain the flood of feeling, "is never, ever repeat what you just told me over a cell phone."

From that moment on, they would talk only on landlines, in person, or via heavily encrypted email. Secrecy was critical. They had to find a solution before the problem became public.

Kaminsky was alone in his Seattle apartment when he discovered a security vulnerability that could leave banks, online retailers, and ISPs open to hackers.

Photo: John Keatley

http://www.wired.com/techbiz/people/magazine/16-12/ff_kaminsky http://www.youtube.com/watch?v=R-SSVxsH7vw
Criminality

How can we identify spam, link farms and click fraud on the web?

Now in its third year, the Click Fraud Index monitors and reports on data gathered from the Click Fraud Network. The Click Fraud Network provides statistically significant industry PPC data collected from online advertising campaigns for both large and small companies across all the leading search engines. Key findings from data reported for Q4 2008 include:

- The overall industry average click fraud rate grew to 17.1% for Q4 2008. That's up from 16.0% in Q3 2008 and from the 15.0% rate reported for Q4 2007.
- The average click fraud rate of PPC advertisements appearing on search engine content networks, including Google AdSense and the Yahoo Publisher Network, was 28.2%. That's up from the 27.1% rate reported for Q3 2008 and down slightly from the 28.3% rate reported for Q4 2007.
- Traffic from botnets was responsible for 31.4% of all click fraud traffic in Q4 2008. That's up from the 27.8% rate reported for Q3 2008 and the 32.0% rate reported for Q4 2007.
- In Q4 2008, the greatest percentage of click fraud originating from countries outside the U.S. came from Canada (7.4 percent), Germany (3.0 percent) and China (2.3 percent).

"Based on the data we tracked in Q4 2008, it seems that the online advertising industry is not immune to the growing tide of cybercrime during this recessionary period," said Tom Cuthbert, president of Click Forensics. "Both the overall click fraud rate and the rate of click fraud originating from botnets were the highest ever in Q4 2008. In addition, we've started to see old schemes like click farms reemerge. Advertisers should pay close attention to these types of threats in their online campaigns throughout the year."
Random Social Connections

How do random social graphs differ from „real“ social networks?

http://vimeo.com/9669721

Privacy

To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles [WWW 2009]

Elena Zheleva
Department of Computer Science
University of Maryland, College Park

Lise Getoor
Department of Computer Science
University of Maryland, College Park

Friendship network:

Social network groups:

- class labels (public profiles)
- unknown labels (private profiles)
6 degrees of separation?

- 30 billion conversations among 240 million people of Microsoft Messenger
- Communication graph with 180 million nodes and 1.3 billion undirected edges
- Largest social network constructed and analyzed to date (2008)
Knowledge Management Institute

Markus Strohmaier

Overview

What do we serve today?

• Course organization
• Course overview
• Motivation and Background

(courtesy, www.opte.org)

The Web in 2007

Total Sites Across All Domains August 1995 - September 2007

136 mio

55 mio

(courtesy, www.opte.org)

Sept 2007, Netcraft
Search (like it’s 1997!)

[http://web.archive.org/web/19981111183552/google.stanford.edu/]
Computers - another 10 years back (1987)

„Web science? Can you say that again?“
Activity of #streams on Twitter over time

- Jan 9 Earthquake in California
- Earthquake in Haiti
- Little aftermath of California quake
- Aftermath of the earthquake in Haiti
Motivation

“[…] As the Web has grown in complexity and the number and types of interactions that take place have ballooned, it remains the case that we know more about some complex natural phenomena (the obvious example is the human genome) than we do about this particular engineered one.”

A Framework for Web Science

How can you sleep at night knowing that you brought all that pornography to the living room?

A question Tim Berners-Lee was asked on a TV interview by a journalist
Course team

• Instructors: Markus Strohmaier & Denis Helic
• Teaching Assistants:
 – Klaus Potzmader klaus.potzmader <8 8 8> student.TUGraz.at
 – David Derler dderler <8 8 8> student.tugraz.at
 – Daniel Fritzsch d.fritzsch <8 8 8> student.tugraz.at
 – Michael Münzer michael.muenzer <8 8 8> student.tugraz.at

• For general, course- or assignment-related questions, please use the newsgroup tu-graz.lv.web-science
About me

Education:
- 2002 - 2004 PhD. in Knowledge Management, Faculty of Computer Science, TU Graz
- 1997 - 2002 M.Sc., Telematik, TU Graz

Background:
- 2011-2012 Visiting Assistant Prof., Stanford University, USA
- July 2007 - present: Ass. Prof. (Univ.Ass.), TU Graz, Austria
- 2006 - 2007 15 months Post-Doc, University of Toronto, Canada
- 2002 - 2006 Researcher, Know-Center, Austria
About me

Research Background:
• Web Research / Knowledge Management

Research Interests:
• Web Science with a focus on networks and Social Computing
• Intentional Structures and Representations on the Web

Interesting topics for projects, Bachelor / Master thesis:
• If you are interested in the topics of this course, it is likely that you are interested in doing a project / a thesis with me as well. Contact me to discuss opportunities.
Course Context

• **707.000 Web Science and Web Technology**
 – 6th year
 – Home assignments are different from last year’s course!

• **Part of „Software Engineering & Business“**
 – Bachelor studies, 6th semester
 – **programming skills** are required

• Your feedback is appreciated
Course Organization and Logistics

• **Lectures**
 mostly on Mondays 12:15 - 13:45,
 Mar 2013 - June 2013,
 Room HS i12 (Inffeldgasse 16b, Ground Floor)

• **Website**: http://markusstrohmaier.info/courses/

• **Newsgroup**: tu-graz.lv.web-science
 – Please use the newsgroup for all questions related to the course

Enroll!
In order to obtain a grade, you need to enroll for this course until **March 13 2013** via TUG online!

• **Weekly Readings**
 Password to access protected documents on the course website:
Grading

So how do you receive a grade in this course?

- 50% **home assignments**
 - Due dates for submissions are announced on the course website

- 50% **final exam**
 - Date TBA, no aids are allowed

Prerequisites: Course „Einführung in die Strukturierte Programmierung“, **General Programming Knowledge**

- In order to successfully complete the course, you need to have a score of >= 51%

You can **cancel** your participation in this course anytime before the final exam:
 - just don’t show up at the final exam, this will **not** result in a negative grade
Grading

The following weights will be assigned to home assignments and the final exam (totalling 100\%):

- **MatLab/Octave Exercises** (50\%), *Individual Work*
 - Details to be announced during this course
- **Final Exam**: 50\%
Submission of Home Assignments

Check in via CVS

(but more on this later)
Policies

- **Course documents**: Assignment descriptions and lecture notes will be made available on the course website.

- **Deadlines**: Late submissions (same day) will result in a loss of 1/3 of all your points for this assignment. After the day of the deadline, no points will be awarded.

- **Plagiarism**: By submitting home assignments, you agree that your work will be processed by plagiarism tools.

- **Nachklausur**: Participating in the Final Exam is a prerequisite for every student who wants to obtain a positive grade for this course. Because you can already obtain 50% of the points during Home Assignments (>=51% are necessary overall), no general "Nachklausur" will be offered. (Exception: illness, see details on course website)

For all course policy details, please see the course website: http://markusstrohmaier.info/courses/
Plagiarism

You are allowed to discuss home assignments with colleagues, but

You are not allowed to jointly work on the assignments, copy solutions or share code.

Cases of Plagiarism in this course over time

We will apply sophisticated plagiarism detection software to your submissions.

Consequence: all students who jointly worked on, shared or copied code could not complete the course (=repeat next year, loose 1 year).
(Incomplete) FAQ

Q: My colleague plagiarized my code, but I did all the work myself. Do both of us have to repeat the course again?
A: Yes, we can not verify who copied from whom. Sharing code is prohibited. Both students have to take the class again. Do not share your CVS!

Q: I plagiarized just 1 of n home assignments. Does this mean I can not complete the entire course?
A: Correct. If you submit plagiarized code for any of the home assignments, it means you have to repeat the class next year.

Q: Does an automated program alone decide whether my code represents a case of plagiarism?
A: No. We apply plagiarism detection software as a first step. Each case will be reviewed by teaching assistants and lecturers before we make a decision.
Home Assignment Submissions

You have to strictly follow the rules for submitting to CVS.

Do not forget to assign correctly formatted tags to your submission.

Do not forget to TEST (with the provided script) whether we can check out your submission.

If we can’t check out your submission, you will get 0 points.

!ZERO POINTS!

(Even if your code might be correct)

This course has ca. 200 students. We can’t check out submissions individually, we don’t have the resources.

So don’t forget to test your submission!
Home Assignment Submissions

TO REPEAT:

If you don’t submit correctly,

we can not evaluate your submission

and you won’t get ANY points.

Zero. (nothing)

Therefore: test your submission
Course Organization

To successfully complete the course, I recommend attending the weekly lectures, in which we

• **discuss papers** (read before class!)
• **go through the theory necessary for home assignments**
• **answer questions related to home assignments**
Course Goals

• To equip you with the basic knowledge and tools for performing independent (network) analysis on the web
 – Knowledge:
 Network theory, search, mining, tagging, web technologies, applications, …
 – Tools:
 MatLab, Pajek, REST, simulators, network metrics
Home Assignments HA1.1-1.4

• **Tools**
 - Matlab/Octave, ConExp, Pajek

• **Networks**
 - One-Mode Networks
 - Two-Mode Networks

• **Analysis**
 - Lattices
 - Metrics, such as Centrality, Redundancy
 - Ranking
 - Network simulators
 - Network infection

How many of you know Matlab/Octave?

Home Assignment 1.1 will be handed out in week 3!
Approximate Course Schedule

<table>
<thead>
<tr>
<th>March</th>
<th>MatLab/OctaveExercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>Ongoing submission of home assign.!</td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
</tr>
</tbody>
</table>
Home Assignments

• Have been somewhat revised from last year’s course -> some are completely new

• They might need clarification or refinement once they are handed out.

• Changes and/or updates to the assignments will occur

• Once they occur, they will be announced in the newsgroup, it is your responsibility to obtain them!
Course Topics

• World Wide Web
• What is network theory? Why is it relevant for the web?
• How do networks evolve?
• How do you search in networks?
• What are social parameters of networks?
• What are current web technologies?

But also e.g. a brief History of Smileys ;-)
Simulations: e.g. http://cmol.nbi.dk/javaapp.php
How many of you know…

- 6 degrees of separation (small world problem)
- Power law networks
- Network generators
- The Meaning of PageRank?
- Degree Distributions
- Galois Lattices
- …
Preliminary Course Schedule

http://markusstrohmaier.info/courses/
Non-Goals

In the research community, there is no consensus regarding the theoretical foundations of a „Science of the Web“ yet.

So therefore, the topics of this course are necessarily subjectively selective.

Instead of giving an authoritative account of web science, this course aims to give an overview of prominent, interesting and/or powerful research results generated by related fields so far.
Recommended Literature

There is no required text book for this course, however you might find it helpful to have a look at the following resource:

• **Networks, Crowds, and Markets**: Reasoning About a Highly Connected World, by David Easley and Jon Kleinberg, 2010 ([free online book](http://markusstrohmaier.info/courses/))

• Also see the resources listed on http://markusstrohmaier.info/courses/
Questions?

Raise them **NOW**!

Or ask them later:
- At the end of each class
- Via newsgroup

(now would be a good time though!)
Let’s start!
- Science and the Web -
The Web: Looking Back, Looking Forward
Tim Berners-Lee

Talking about Web Science
(~ 70mins)

The Web: Looking Back, Looking Forward
[Berners-Lee 2007]
The Web Today

http://www.youtube.com/watch?v=6gmP4nk0EOE
How do the topics addressed in this movie relate to a Science of the Web?
A Brief Overview of the Web
[Berners Lee et al 1994]

- **Vision:** the W3 operates without regard to
 - Where information is stored
 - How information is stored or
 - What system is used to manage it

- **Documents** referring to each other by **links**
- Analogy to spiders ‘construction: the web

- **Hypertext paradigm**
 - Sensitive parts of text representing links
 - A link is followed by mere pointing and clicking (or typing a ref. Nr.)
 - No primary focus on search

- Hypertext links may be made to any data in non-W3 servers (FTP, Gopher, WAIS or internet news) as W3 clients have the ability to present all such data as hypertext.

- The World Wide Web combines Hypertext and Search

the web != internet
The web: Presentation and Extraction
[Berners Lee et al 1994]

The architecture of W3 (fig. 2) is one of browsers (clients) which know how to present data but not what its origin is, and servers which know how to extract data but are ignorant of how they will be presented. Servers and clients are unaware of the details of each other’s operating system quirks and exotic data formats.

All the data in the Web is presented with a uniform human interface (Fig. 3). The documents are stored (or generated by algorithms) throughout the internet by computers with different operating systems and data formats. Following a link from the SLAC home page (the entry into the Web of a SLAC user) to the NIKHEF telephone book is as easy and quick as following the link to a SLAC Working Note.

Fig. 2: Architecture of W3
The web
[Berners Lee et al 1994]

Fig 1. The basic hypertext model is enhanced by searches.
Features of the web
[Berners Lee et al 1992]

Features to note are:-

- Information need only be represented once, as a reference may be made instead of making a copy;
- Links allow the topology of the information to evolve, so modeling the state of human knowledge at any time without constraint;
- The web stretches seamlessly from small personal notes on the local workstation to large databases on other continents;
- Indexes are documents, and so may themselves be found by searches, and/or following links. An index is represented to the user by a “cover page” which describes the data indexed and the properties of the search engine.
- The documents in the web do not have to exist as files; they can be “virtual” documents generated by a server in response to a query or document name. They can therefore represent views of databases, or snapshots of changing data (such as the weather forecast, financial information, etc).
Historical Vision of the Web

Is a space in which

- **Resources** are identified by Uniform Resource Identifiers (URIs)
- **Protocols** support interaction between agents (HTTP)
- **Formats** represent information resources (HTML)
URI

Uniform Resource Identifier

• Resources may be anything that can be linked to or spoken of
 – Resources can contain a reference to another resource
• *Identifiable,* but not necessarily *retrievable*
 – (e.g. protected access)
• A single global system of identifiers
 – Each URI ideally identifies a single resource in a context-independent manner
• URIs act as names and addresses
• URIs require institutions
 – E.g. the registry that handles domain names
HTTP & HTML: High Level Overview
http://www.w3.org/Protocols/HTTP/HTTP2.html

HTTP: A protocol that is basically stateless, a transaction consisting of
• Connection
 – The establishment of a connection by the client to the server - when using TCP/IP port 80 is the well-known port, but other non-reserved ports may be specified in the URL;
• Request
 – The sending, by the client, of a request message to the server;
• Response
 – The sending, by the server, of a response to the client;
• Close
 – The closing of the connection by either both parties.

HTML: A representation format
• Idea: Decoupling of content and representation
• Cues for graphical presentation of content
Why Web Science?

• Dynamics and evolution
• The “deep web” (resources not available by robots)
• Sampling, lack of complete enumeration
• Scale (e.g. “What’s the percentage of web pages updated daily?”)
• Search (e.g. “What’s the percentage of web pages indexed by search engines?”)
• Web topology
• Artifacts of social interaction (weblogs, etc), web sociology
• …
Science (in a nutshell)

<table>
<thead>
<tr>
<th>What type of question are you asking?</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Existence:</td>
</tr>
<tr>
<td>◆ Does X exist?</td>
</tr>
<tr>
<td>→ Description & Classification</td>
</tr>
<tr>
<td>◆ What is X like?</td>
</tr>
<tr>
<td>◆ What are its properties?</td>
</tr>
<tr>
<td>◆ How can it be categorized?</td>
</tr>
<tr>
<td>◆ How can we measure it?</td>
</tr>
<tr>
<td>◆ What are its components?</td>
</tr>
<tr>
<td>→ Descriptive-Process</td>
</tr>
<tr>
<td>◆ How does X work?</td>
</tr>
<tr>
<td>◆ What is the process by which X happens?</td>
</tr>
<tr>
<td>◆ In what are the steps as X evolves?</td>
</tr>
<tr>
<td>◆ How does X achieve its purpose?</td>
</tr>
<tr>
<td>→ Descriptive-Comparative</td>
</tr>
<tr>
<td>◆ How does X differ from Y?</td>
</tr>
<tr>
<td>→ Relationship</td>
</tr>
<tr>
<td>◆ Are X and Y related?</td>
</tr>
<tr>
<td>◆ Do occurrences of X correlated with occurrences of Y?</td>
</tr>
<tr>
<td>→ Causality</td>
</tr>
<tr>
<td>◆ Does X cause Y?</td>
</tr>
<tr>
<td>◆ Does X prevent Y?</td>
</tr>
<tr>
<td>◆ What causes X?</td>
</tr>
<tr>
<td>◆ What effect does X have on Y?</td>
</tr>
<tr>
<td>→ Causality-Comparative</td>
</tr>
<tr>
<td>◆ Does X cause more Y than does Z?</td>
</tr>
<tr>
<td>◆ Is X better at preventing Y than is Z?</td>
</tr>
<tr>
<td>◆ Does X cause more Y than does Z under one condition but not others?</td>
</tr>
<tr>
<td>→ Design</td>
</tr>
<tr>
<td>◆ What is an effective way to achieve X?</td>
</tr>
<tr>
<td>◆ How can we improve X?</td>
</tr>
</tbody>
</table>
What could theories for the web look like?

A few examples of assertions:

• Every page on the web can be reached by following less than 10 links. (True/False/Depends?)
• A wikipedia page contains, on average, 0.03 false facts (True/False/Depends?)
• 1%-4% of users express their search queries in the form of goals such as “increase adsense revenue” (True/False/Depends?)
• The average number of words per search query is more than 3 (True/False/Depends?)

Can these statements be easily validated? Can they lead to good/interesting theories? What constitutes good theories?
Some Quality Characteristics of Theories

• Clarity
• Simplicity
• Predictive Power
• Explanative Power
• Utility
• Testability
• Falsifiability (vs. Falsification)
Networks

A significant part of this course will focus on network theory.

• Graph theory vs. Network theory
 – While graph theory focuses on mathematics, network theory focuses on networks that can be observed in the „real world“
 – Evolution of networks

• There are many different forms of networks available on the net

 – Can you name a few of them?
The Web as a Network of Related Sites

http://www.touchgraph.com/TGGoogleBrowser.html
(based on Google ‘s „related sites“ functionality)
The Web as a Network of Search Results

http://www.kartoo.com (search for "web2.0")
Delicious as a Network of tags

Fig. 1. The del.icio.us tags associated through co-occurrence on items and the clusters emerging

Table 1. The five main clusters of interest based on the Concept-Object network

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>travel</td>
<td>cote, provence, villa, azur, mas, holiday, vacation, tourism, france, heritage</td>
</tr>
<tr>
<td>business</td>
<td>venture_capital, enterprise, up, start, venture, newspaper, capital, Segev, pitango, vc</td>
</tr>
<tr>
<td>free time</td>
<td>procrastination, info, advice, gtd, life, notes, planning, daily, reading, forums</td>
</tr>
<tr>
<td>sex</td>
<td>hot, to, street, pictures, on, photos, free, celeb, adult, lesbian</td>
</tr>
<tr>
<td>web design</td>
<td>design, designer, webdesign, premium, logo, logos, dreamweaver, templates, best, good</td>
</tr>
</tbody>
</table>
In a model (framework) for web log research, it was suggested that one should look at five dimensions to study weblogs. This post shows that one can obtain a fascinating peek into the blogosphere by looking at just two dimensions: [links, persons]. Perhaps it is an idea to also add time so that we can see whether the yellow and pink posts occur before (this is possible), during or after the conversation.

Courtesy of http://anjo.blogs.com/
User Goals
Web Science
www.webscience.org

Knowledge Management Institute

Markus Strohmaier
2013
Some Course Highlights
An Experimental Study of the Small World Problem [Travers and Milgram 1969]

A Social Network Experiment tailored towards
- Demonstrating
- Defining
- And measuring
Inter-connectedness in a large society (USA)

A test of the modern idea of “six degrees of separation”
Which states that: every person on earth is connected to any other person through a chain of acquaintances not longer than 6
Some Course Highlights

A reported number of 900 Mio people (that is roughly one out of seven people on earth!) watched a video of a previously unknown, video amateur, teenage starwars fan.

How is this possible? How does information spread on the web? How can we model this? What are the effects on individuals and society?

http://entertainment.timesonline.co.uk/tol/arts_and_entertainment/tv_and_radio/article650932.ece
Some Course Highlights
Some Course Highlights

Folksonomy Analysis
Check

• Is there anything else you want to know w.r.t. this course?
Any further questions?

Have a good start in the new semester!
- See you next week