

707.000 Web Science and Web Technology "The Small World Problem"

"every person on earth is connected to any other person through a chain of acquaintances not longer than 6"? Markus Strohmaier

> Univ. Ass. / Assistant Professor Knowledge Management Institute Graz University of Technology, Austria

e-mail: <u>markus.strohmaier@tugraz.at</u> web: <u>http://www.kmi.tugraz.at/staff/markus</u>

Overview

Topics

- Definition of the Small World Problem
- Results from a social experiment

M

Do I know somebody in ...?

XING	×(17,5 + Invite con	518 members onl	line Se	Ip Downloads About us Mobile Language 🐖 📼 earch Name, company or search term Find Advanced Search Powersearch
📓 Start 🛛 Me	mbers Messages	Address Book	Groups	Events M	larketplace	e PremiumWorld
dvanced Search	Powersearch Search	Agents				
our connectio	on to Sa Li					Show all 92 different connections to Sa
Dr. Markus Strohma Graz University of Technology	ier Dr. Harald Holz DFKI GmbH	Mo Vollra SAP AG	<u>ith</u>		r cell Assan utzfahrzeuge	Sa Li BENQ mobile beijing
	Sa Li Quality gate engineer BENQ mobile beijing Beijing, China		Options ⁺ Add as cont I Send mess ⁺ Introduce ⁺ Bookmark I Bookmark I Show locati I Show route	age ion		Memo: Create memo
Business details	Contact details	eb About me	Guestbook			Sa Li's statistics
tatus	Employee					No Premium Membership
/ants						Member since: 10/2006 Profile hits: 228
aves						Direct contacts: 25
ompany	<u>BENQ mobile beijing</u> : Qi	ality gate engineer	⊠ WEB	(06/2006 -)		Activity mater: 60%

The Bacon Number

Markus Strohmaier

The Kevin Bacon Game

The oracle of Bacon

www.oracleofbacon.org

The Bacon Number [Watts 2002]

TABLE 3.1 DISTRUBUTION OF ACTORS ACCORDING TO BACON NUMBER							
BACON NUMBER	NUMBER OF ACTORS	CUMULATIVE TOTAL NUMBER OF ACTORS					
0	2 and is (120) som 20.50	1					
1	1,550	1,551					
2	121,661	123,212					
3	310,365	433,577					
4	71,516	504,733					
5	5,314	510,047					
6	652	510,699					
7	90	510,789					
8	38	510,827					
9		510,828					
10	and and signal store a	510,829					

The Erdös Number

Who was Erdös?

http://www.oakland.edu/enp/

A famous Hungarian Mathematician, 1913-1996

Erdös posed and solved problems in number theory and other areas and founded the field of discrete mathematics.

- 511 co-authors (Erdös number 1)
- ~ 1500 Publications

The Erdös Number

The Erdös Number:

Through how many research collaboration links is an arbitrary scientist connected to Paul Erdös?

What is a research collaboration link? Per definition: Co-authorship on a scientific paper -> Convenient: Amenable to computational analysis

What is my Erdös Number?

→ 5

me -> S. Easterbrook -> A. Finkelstein -> D. Gabbay -> S. Shelah -> P. Erdös

Stanley Milgram

- A social psychologist
- Yale and Harvard University
- Study on the Small World Problem, beyond well defined communities and relations (such as actors, scientists, ...)

1933-1984

- Controversial: The Obedience Study
- What we will discuss today: "An Experimental Study of the Small World Problem"

Introduction

The simplest way of formulating the small-world problem is: Starting with any two people in the world, what is the likelihood that they will know each other?

A somewhat more sophisticated formulation, however, takes account of the fact that while person X and Z may not know each other directly, they may share a mutual acquaintance that is, a person who knows both of them. One can then think of an acquaintance chain with X knowing Y and Y knowing Z. Moreover, one can imagine circumstances in which X is linked to Z not by a single link, but by a series of links, X-A-B-C-D...Y-Z. That is to say, person X knows person A who in turn knows person B, who knows C... who knows Y, who knows Z.

> [Milgram 1967, according to]http://www.ils.unc.edu/dpr/port/socialnetworking/theory_paper.html#2]

An Experimental Study of the Small World Problem [Travers and Milgram 1969]

A Social Network Experiment tailored towards

- Demonstrating
- Defining
- And measuring

Inter-connectedness in a large society (USA)

A test of the modern idea of "six degrees of separation" Which states that: every person on earth is connected to any other person through a chain of acquaintances not longer than 6

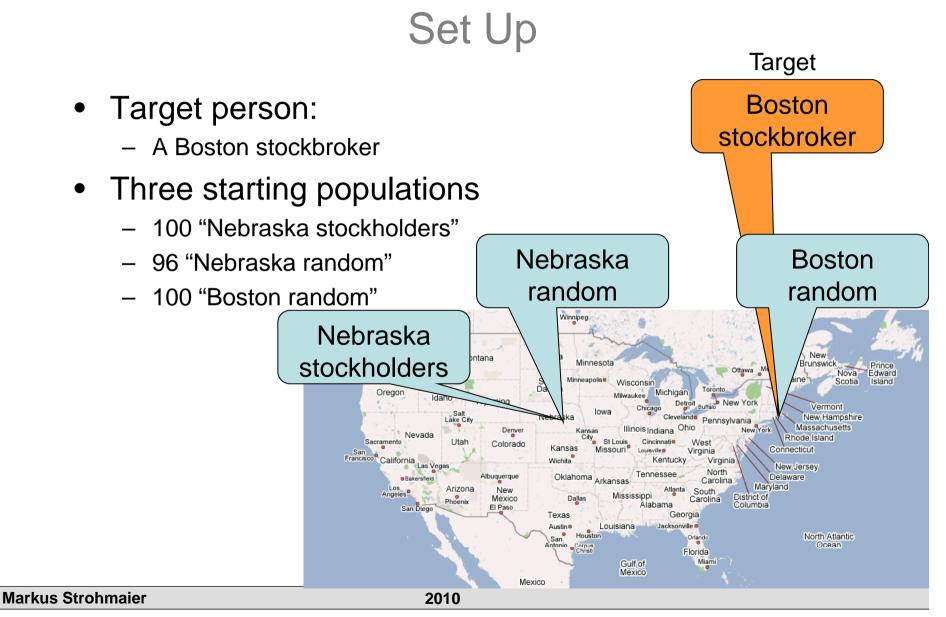
Goal

- Define a single target person and a group of starting persons
- Generate an acquaintance chain from each starter to the target

Experimental Set Up

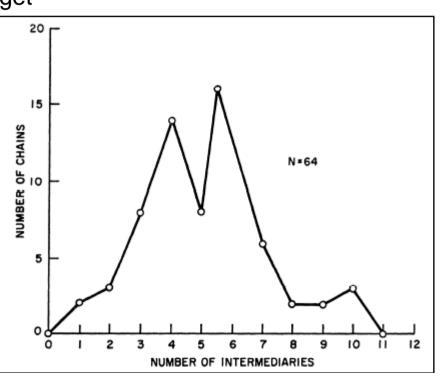
- Each starter receives a document
- was asked to begin moving it by mail toward the target
- Information about the target: name, address, occupation, company, college, year of graduation, wife's name and hometown
- Information about relationship (*friend/acquaintance*) [Granovetter 1973]

Constraints

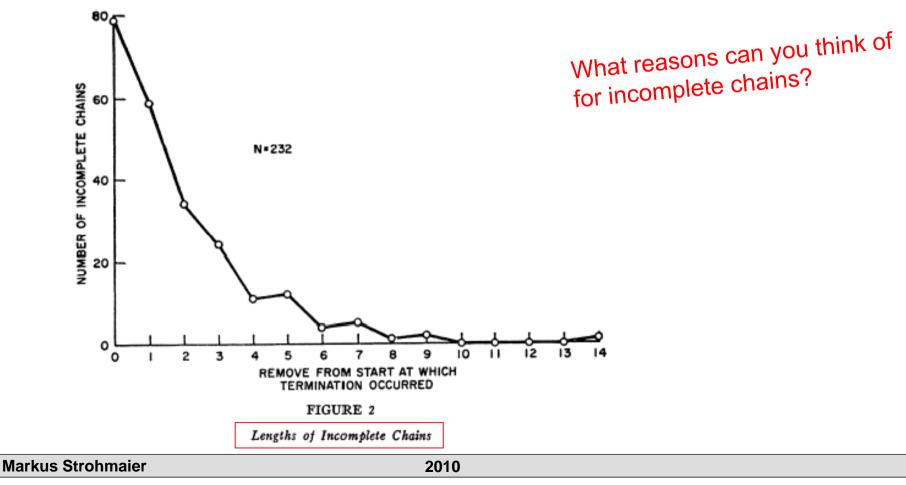

- starter group was only allowed to send the document to people they know and
- was urged to choose the next recipient in a way as to advance the progress of the document toward the target

Questions

- How many of the starters would be able to establish contact with the target?
- How many intermediaries would be required to link starters with the target?
- What form would the distribution of chain lengths take?



Results I


- How many of the starters would be able to establish contact with the target?
 - 64 out of 296 reached the target
- How many intermediarie starters with the target?
 - Well, that depends: the overa
 - Through hometown: 6.1 links
 - Through business: 4.6 links
 - Boston group faster than Net
 - Nebraska stockholders not fa
- What form would the dist take?



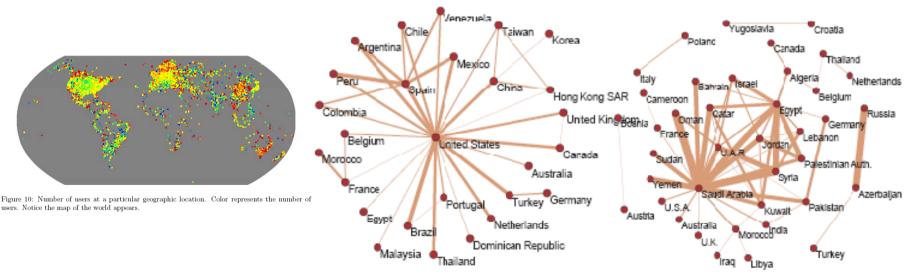
Results II

• Incomplete chains

6 degrees of separation

• So is there an upper bound of six degrees of separation in social networks?

What kind of problems do you see with the results of this study?

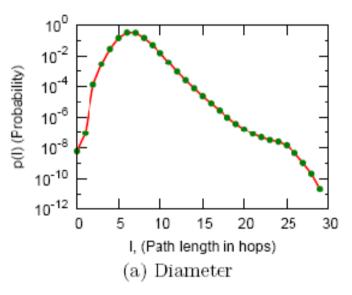

- Extremely hard to test
- In Milgram's study, ~2/3 of the chains didn't reach the target
- 1/3 random, 1/3 blue chip owners, 1/3 from Boston
- Danger of loops (mitigated in Milgram's study through chain records)
- Target had a "high social status" [Kleinfeld 2000]

Follow up work (2008)

http://arxiv.org/PS_cache/arxiv/pdf/0803/0803.0939v1.pdf

- Horvitz and Leskovec study 2008
- 30 billion conversations among 240 million people of Microsoft Messenger
- Communication graph with 180 million nodes and 1.3 billion undirected edges
- Largest social network constructed and analyzed to date (2008)

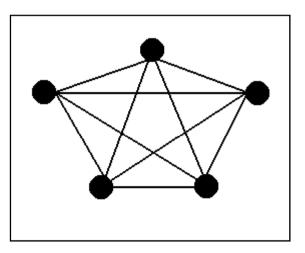
Markus Strohmaier

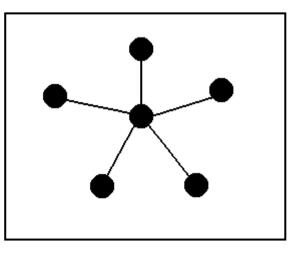

Figure 14: (a) Communication among countries with at least 10 million conversations in June 2006. (b) Countries by average length of the conversation. Edge widths correspond to logarithms of intersity of links.

Follow up work (2008) http://arxiv.org/PS_cache/arxiv/pdf/0803/0803.0939v1.pdf

Approximation of "Degrees of separation"

- Random sample of 1000 nodes
- for each node the shortest paths to all other nodes was calculated. The average path length is 6.6. median at 7.
- Result: a random pair of nodes is 6.6 hops apart on the average, which is half a link longer than the length reported by Travers/Milgram.
- The 90th percentile (effective diameter (16)) of the distribution is 7.8. 48% of nodes can be reached within 6 hops and 78% within 7 hops.
- we find that there are about "7 degrees of separation" among people.
- long paths exist in the network; we found paths up to a length of 29.

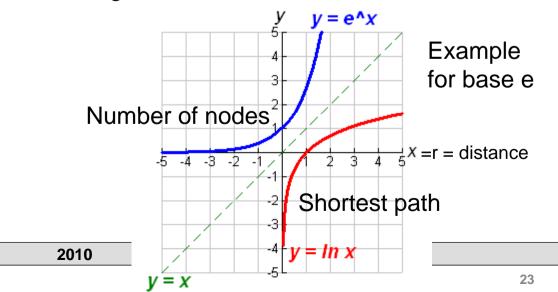




Small Worlds

http://www.infosci.cornell.edu/courses/info204/2007sp/

- Every pair of nodes in a graph is connected by a path with an extremely small number of steps (low diameter)
- Two principle ways of encountering small worlds
 - Dense networks
 - sparse networks with well-placed connectors



Small Worlds [Newman 2003]

- The small-world effect exists, if
 - "The number of vertices within a distance r of a typical central vertex grows exponentially with r (the larger it get, the faster it grows) $x(t) = x_0 e^{kt}$

In other words:

- Networks are said to show the small-world effect if the value of I (avg. shortest distance) scales logarithmically or slower with network size for fixed mean degree $e^{\ln(x)} = x$ if x > 0

Formalizing the Small World Problem [Watts and Strogatz 1998]

The small-world phenomenon is assumed to be present when

 $L \ge L_{random}$ but $C >> C_{random}$

Or in other words: We are looking for networks where local clustering is high and global path lengths are small

What's the rationale for the above formalism?

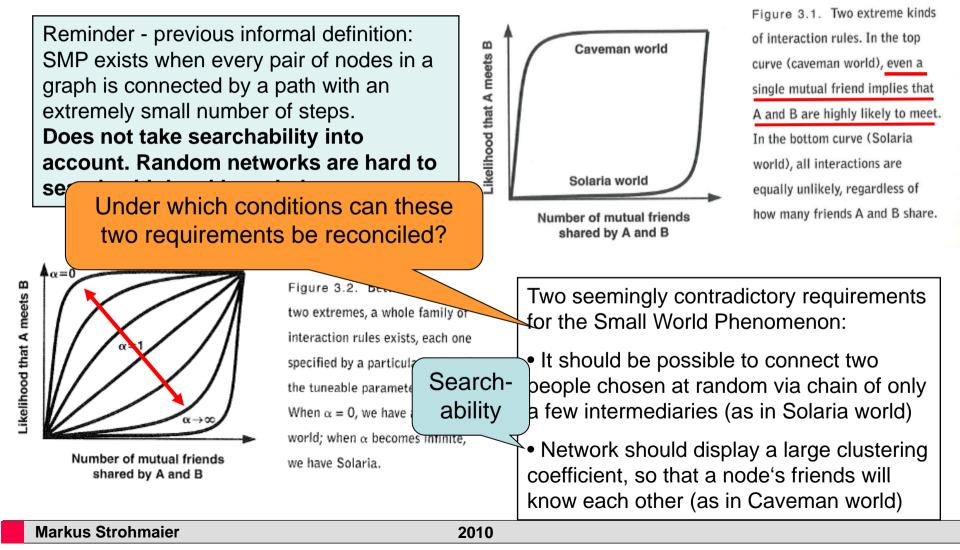
One potential answer: Cavemen and Solaris Worlds

The Solaris World Random Social Connections

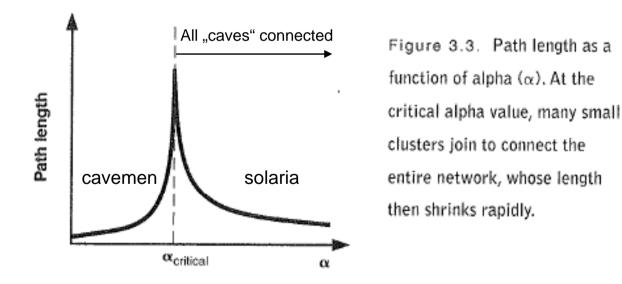
How do random social graphs differ from "real" social networks?

http://vimeo.com/9669721

http://bits.blogs.nytimes.com/2010/02/13/chatroulettes-founder-17-introduces-himself/


The Cave Men World Highly Clustered Social Connections

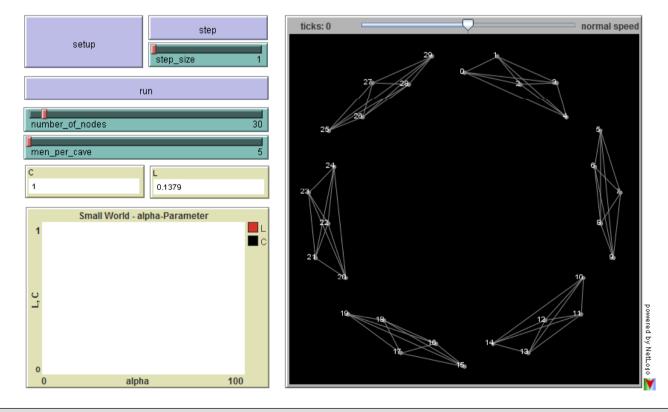
Markus Strohmaier


Formalizing the Small World Problem

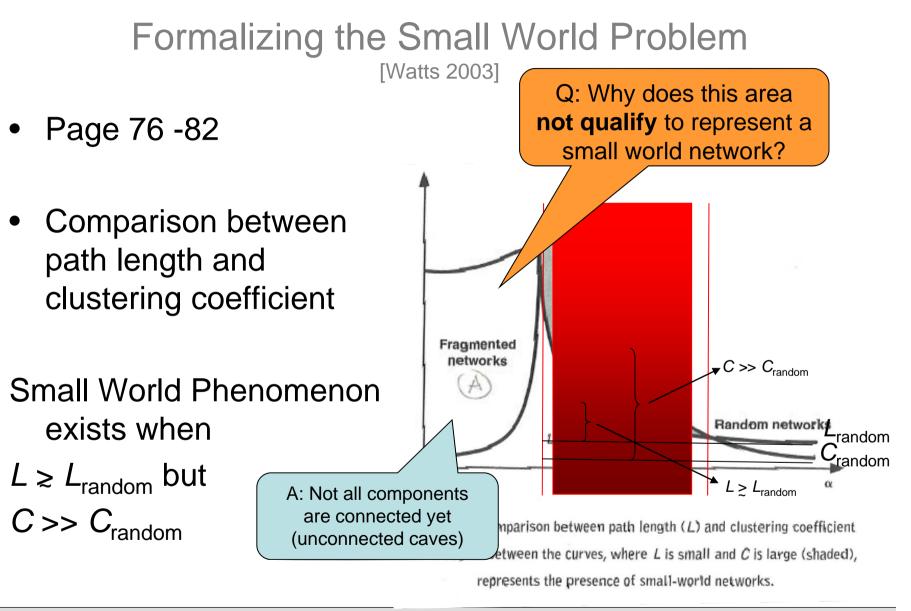
Formalizing the Small World Problem [Watts 2003]

- Page 76 -82
- The alpha parameter
- Path length: computed only over nodes in the same connected component

Markus Strohmaier


2010

Demo – Small Worlds the Alpha Model


http://kmi.tugraz.at/staff/markus/demos/sw-alpha.htm

Small World Simulation - The Alpha Model

Markus Strohmaier

2010

Examples for Small World Networks

[Watts and Strogatz 1998]

Table 1 Empirical examples of small-world networks								
$L > L_{random}$ but $C >> C_{random}$	Lactual	Lrandom	$C_{\sf actual}$	$C_{ m random}$				
Film actors	3.65	2.99	0.79	0.00027				
Power grid	18.7	12.4	0.080	0.005				
Power grid <i>C. elegans</i>	2.65	2.25	0.28	0.05				

Characteristic path length *L* and clustering coefficient *C* for three real networks, compared to random graphs with the same number of vertices (*n*) and average number of edges per vertex (*k*). (Actors: n = 225,226, k = 61. Power grid: n = 4,941, k = 2.67. *C. elegans*: n = 282, k = 14.) The graphs are defined as follows. Two actors are joined by an edge if they have acted in a film together. We restrict attention to the giant connected component¹⁶ of this graph, which includes ~90% of all actors listed in the Internet Movie Database (available at http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators, transformers and substations, and edges represent high-voltage transmission lines between them. For *C. elegans*, an edge joins two neurons if they are connected by either a synapse or a gap junction. We treat all edges as undirected and unweighted, and all vertices as identical, recognizing that these are crude approximations. All three networks show the small-world phenomenon: $L \ge L_{random}$ but $C \gg C_{random}$.

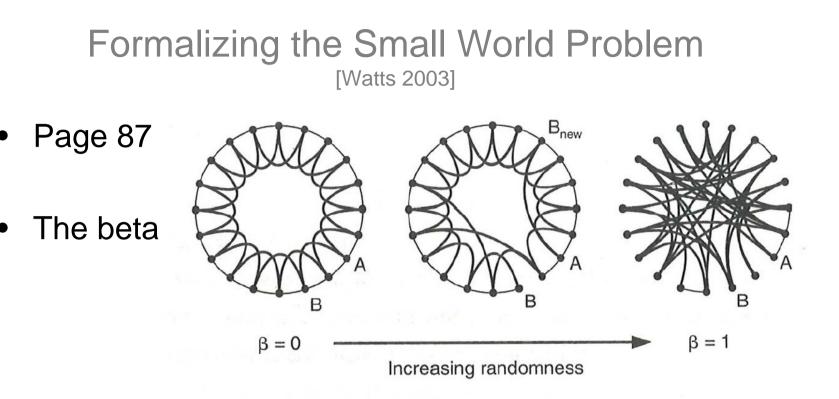
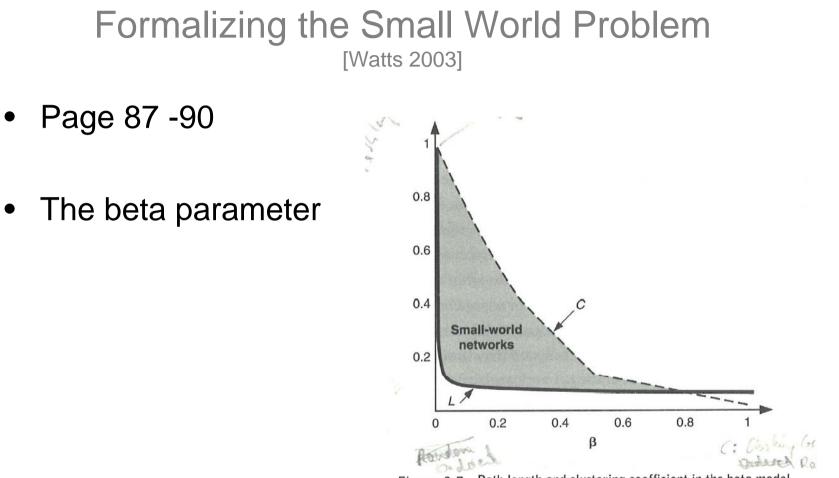
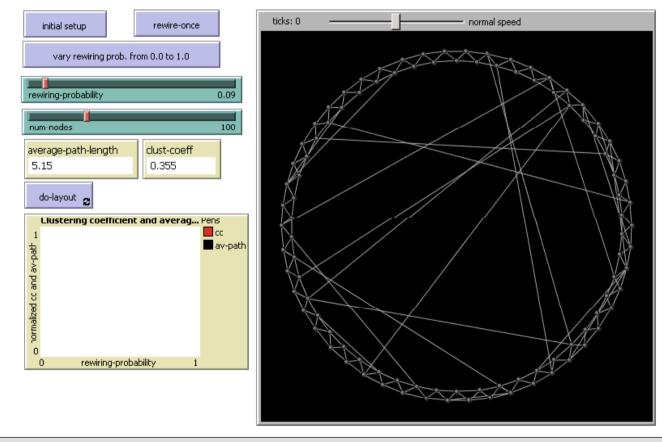


Figure 3.6. Construction of the beta model. The links in a one-dimensional, periodic lattice are randomly rewired with probability beta (β). When beta is zero (left), the lattice remains unchanged, and when beta is one (right), all links are rewired, generating a random network. In the middle, networks are partly ordered and partly random (for example, the original link from A to B has been rewired to B_{new}).




Figure 3.7. Path length and clustering coefficient in the beta model. As with the alpha model (see Figure 3.4), small-world networks exist when path length is small and the clustering coefficient is large (shaded region).

Demo – Small Worlds

http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldWS.html

Watts Strogatz Small World Model

Markus Strohmaier

Contemporary Software

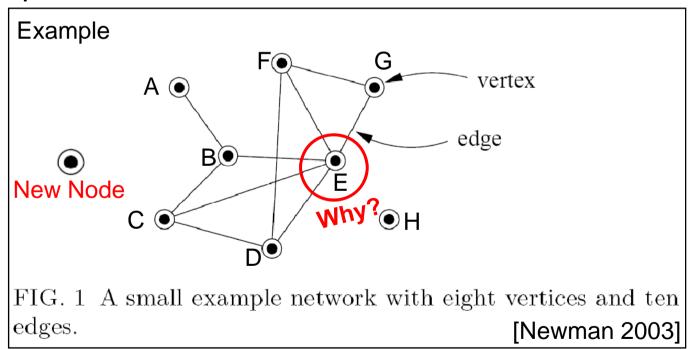
- Where does the small-world phenomenon come into play in contemporary software, in organizations, ..?
- Xing, LinkedIn, Myspace, Facebook, FOAF, ...
- Business Processes, Information and Knowledge Flow

How do Small World Networks form?

Preferential Attachment [Barabasi 1999]

"The rich getting richer"

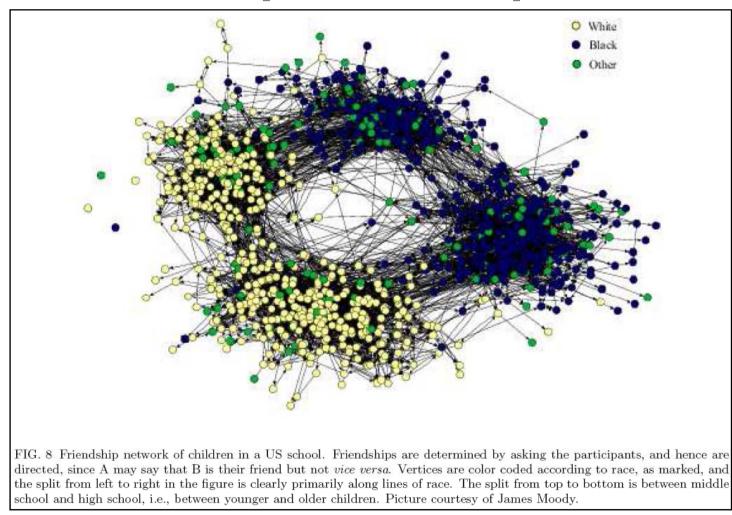
Preferential Attachment refers to the high probability of a new vertex to connect to a vertex that already has a large number of connections


Example:

- 1. a new website linking to more established ones
- 2. a new individual linking to well-known individuals in a social network

Preferential Attachment Example

Which node has the highest probability of being linked by a new node in a network that exhibits traits of preferential attachment?


Assortative Mixing (or Homophily) [Newman 2003]

Assortative Mixing refers to selective linking of nodes to other nodes who share some common property

- E.g. degree correlation high degree nodes in a network associate preferentially with other high-degree nodes
- E.g. social networks nodes of a certain type tend to associate with the same type of nodes (e.g. by race)

Assortative Mixing (or Homophily) [Newman 2003]

Markus Strohmaier

Disassortativity [Newman 2003]

Disassortativity refers to selective linking of nodes to other nodes who are different in some property

 E.g. the web low degree nodes tend to associate with high degree nodes

Any questions?

See you next week!