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Overview

A dAgenda

• Network Creation and Evolution
– Random Networks, Configuration Model, Barabasi and Albert

• Network Processes• Network Processes
– The SIR Model
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Motivation

With demos from http://www-personal.umich.edu/~ladamic/NetLogo/

Examples of network evolution: 

• „Invites“ to join GMail
• „Invites“ to buy Chumby

I it “ t j i J t• „Invites“ to join Joost
• Vaccination strategies for epidemics
•
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BackgroundBackground
[Newman 2003]

• First example of a scale free network (Price):• First example of a scale-free network (Price):
– Network of citations between scientific papers
– Both in- and out-degrees had power-law distributions

• Answered the question: How do power law distributionsAnswered the question: How do power law distributions 
emerge?

– “the rich get richer”
– In other words: the amount you get goes up with the amount you already 

hhave
• The “Matthew affect”

– “For to every one that hath shall be given” (Matthew 25:29)
– (in german ~ “wer hat dem wird gegeben”)– (in german wer hat dem wird gegeben )

• Other labels
– Cumulative advantage
– Preferential attachment

• Evident in scientific paper citations
– The rate at which a paper gets new citations is proportional to the number 

that it already has
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Giant Components - Demo

Wh d Gi t C t ?• When do Giant Components emerge?
http://ccl.northwestern.edu/netlogo/models/GiantComponent
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Two AssumptionsTwo Assumptions
[Leskovec 2006]

“Conventional Wisdom” that networks that evolve are characterized 
byy

• Constant average degree
– Edges grow linearly with edges

Sl l i di t• Slowly growing diameter
– Growing diameter with the addition of new nodes

Empirical observations show that
• Networks are becoming denser over time (densification power 

laws)laws)
• Effective diameter is in many cases decreasing as networks 

grow (shrinking diameter)
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Empirical Observation: DensificationEmpirical Observation: Densification
[Leskovec 2006]
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Empirical Observation: DensificationEmpirical Observation: Densification
[Leskovec 2006]
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Empirical Observation: Effective DiameterEmpirical Observation: Effective Diameter
[Leskovec 2006]

Eff ti di tEffective diameter:
The minimum distance d 

such that at least 90%such that at least 90% 
of the connected node 
pairs are at distance atpairs are at distance at 
most d

DecreasingDecreasing 
diameter 
over time
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MotivationMotivation
[Leskovec 2006]

What underlying processes cause a graph to
1. systematically densify?
2. experience a decrease in effective diameter even as 

it i i ?its size increases?

But first, let’s take a step back
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Graph GeneratorsGraph Generators
[Leskovec 2006]

“What if we could develop algorithms that are capable of 
constructing networks that exhibit similar characteristics as g
observed in “real-world” networks?”

We could do interesting things, such as:
E t l ti• Extrapolations

– predicting future network development

• Samplingp g
– Drawing a sample and generalizing to the entire population

• Abnormality detection
– Identifying deviations from “normal” network behaviour– Identifying deviations from normal  network behaviour

• Simulation
– Exploring “what if” scenarios, e.g. deletion of hubs, network resilience
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Simple Graph GeneratorsSimple Graph Generators
[Newman 2003]

Can we develop an algorithm that constructs random graphs?

Algorithm:
Take some number n of vertices and connect each pair (or not) 
with probability p (or 1-p)

The Erdos-Renyi / Poisson random Graph
G( ) th t f ll h h i ti d d h

with probability p (or 1 p). 

G(n,m) the set of all graphs having n vertices and m edges, each 
possible graph appearing with equal probability

For example: G(3,2) is the set of all three graphs having 3 vertices p ( ) g p g
and 2 edges, each graph has probability 1/3

->Does not mimic reality
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Faloutsos / LeskovecFaloutsos / Leskovec 
ECML/PKDD 2007
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Random GraphsRandom Graphs
[Faloutsos / Leskovec ECML/PKDD 2007]

� Pros:
Simple model– Simple model

– Phase transitions (giant component with avg. degree >1)
– Giant component

� Cons:
– Degree distribution

No comm nit str ct re– No community structure
– No degree correlations

� Extensions:� Extensions:
Configuration model
– Random graphs with arbitrary degree sequence
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The Configuration ModelThe Configuration Model

C id th d l d fi d i th f ll iConsider the model defined in the following way. 

We specify a degree distribution pk, such that pk is the 
fraction of vertices in the network having degree k. 

We choose a degree sequence, which is a set of n 
values of the degrees k of vertices i = 1 n fromvalues of the degrees ki of vertices i = 1 . . . n, from 
this distribution. We can think of this as giving each 
vertex i in our graph ki “stubs” or “spokes” sticking vertex i in our graph ki stubs  or spokes  sticking 
out of it, which are the ends of edges-to-be. 

[Newman 2003]
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The Configuration ModelThe Configuration Model

Th h i f t b t d f thThen we choose pairs of stubs at random from the 
network and connect them together. It is 
straightforward to demonstrate that this processstraightforward to demonstrate that this process 
generates every possible topology of a graph with 
the given degree sequence with equal probability. g g q q p y

The configuration model is defined as the ensemble of g
graphs so produced, with each having equal weight.

[Newman 2003]
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The Configuration Model:The Configuration Model:
Example

1 D fi d di t ib ti ( 3 2 1 1 1)1. Define a degree distribution (e.g. 3,2,1,1,1)
2. Specify degrees for each node, based on the degree 

distribution (e.g. A->3, B->2, C->1, D->1, E->1)( g , , , , )
3. Insert an edge between two arbitrary nodes in your node set 

that have not satisfied their specified degree yet. 
4 R t t 3 til ll d d ti fi d4. Repeat step 3 until all node degrees are satisfied.
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The Configuration Model:The Configuration Model:
Example II

A th tiAnother perspective:

Example
Faloutsos / Leskovec 
ECML/PKDD 2007
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The Configuration Model

C d t k ith l di t ib ti• Can reproduce networks with power-law distributions
– Accepts arbitrary degree distributions as input

• Does not explain the natural emergence of power law 
networksnetworks

• Does not explain network growth / evolution
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Generating Scale Free NetworksGenerating Scale Free Networks
[Barabasi and Albert 1999]

T i t th i h t f th t k t ti ith ll bTo incorporate the growing character of the network, starting with a small number 
(m0) of vertices, at every time step we add a new vertex with m(≤m0) edges 
that link the new vertex to m different vertices already present in the system.

To incorporate preferential attachment, we assume that the probability Π that a new 
vertex will be connected to vertex i depends on the connectivity ki of that 
vertex, so that Degree of 

Π(ki ) = ki / ∑j kj

g
vertex i

The sum of 
all vertices‘ 

Probability of a new 
vertex attaching to a 
vertex i with degree k

In other words: the probability is the degree of vertex i divided by the sum of all 
nodes’ degrees

After t time steps the model leads to a random network with t+m vertices and mt

degrees

After t time steps, the model leads to a random network with t+m0 vertices and mt 
edges. 

This network evolves into a scale-invariant state following a power law (satisfies the 
two conditions: Growth and Preferential Attachment).
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Generating Scale Free NetworksGenerating Scale Free Networks 
[Barabasi and Albert 1999]

Example:Example:
1. Specify a starting network with a given number of vertices m0 and an initial set 

of edges (e.g.: #edges = 3); initialize t=0
2. Define the number of vertices a new node is required to link to (e.g. m=2)q ( g )
3. Calculate the probabilities Π that a new vertex will be connected to vertex i by 

calculating Π(ki ) = ki / ∑j kj
4. Add the new vertex. Add edges according to the calculated probabilities and m
5. Set t = t+1
6. While t≤ 3 Goto Step 3.
7. Terminate E EF EF G

at time t: t+m0 vertices 
at time t: mt edges added

D

BA

C D

BA

C D

BA

C Π(kA) = 5 / 14 D

BA

C
Π(kA) =
Π(k ) =

?

DC

t = 0
m0 = 4

Π(kA) = 3 / 6
Π(kB) = 1 / 6
Π(k ) 1 / 6

DC
Π(kA) = 4 / 10
Π(kB) = 2 / 10
Π(kC) = 1 / 10
Π(k ) = 1 / 10

DC Π(kA)  5 / 14
Π(kB) = 2 / 14
Π(kC) = 1 / 14
Π(kD) = 1 / 14

DC Π(kB) =
Π(kC) =
Π(kD) =
Π(kE) =

t = 1

# vertices: 5

# d

t = 2

# vertices: 6

# d

t = 3

# vertices: ?

# d

??
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m = 2 Π(kC) = 1 / 6
Π(kD) = 1 / 6

Π(kD) = 1 / 10
Π(kE) = 2 / 10

Π(kE) = 3 / 14
Π(kF) = 2 / 14

Π(kF) =
Π(kG) =

#edges 
added: 2

#edges 
added: 4

#edges 
added: ?
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Generating Scale Free NetworksGenerating Scale Free Networks 
[Barabasi and Albert 2003]

24

Markus Strohmaier 2009



Knowledge Management Institute

Generating Scale Free NetworksGenerating Scale Free Networks 
[Barabasi and Albert 1999]

Because of preferential attachment a vertex that acquires moreBecause of preferential attachment, a vertex that acquires more 
connections than another one will increase its connectivity at a 
higher rate; thus, an initial difference in the connectivity 
between two vertices will increase further as the network 
grows.

Thus older (with smaller ti ) vertices increase their connectivity ( i ) y
at the expense of the younger (with larger ti ) ones, leading 
over time to some vertices that are highly connected, a “rich-
get-richer” phenomenon that can be easily detected in real 
networksnetworks.

But, [Faloutsos / Leskovec ECML/PKDD 2007]
ll d h l ( t t) td (i di t d• all nodes have equal (constant) outdegree (in a directed 

network)
• one needs complete knowledge of the network (knowing the 

degrees of all nodes)

25

Markus Strohmaier 2009

degrees of all nodes)



Knowledge Management Institute

Demo – Preferential Attachment 
Wil k U (200 ) N L P f i l A h d lWilensky, U. (2005). NetLogo Preferential Attachment model. 

http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. Center for Connected 
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL

htt // l i h d / l d i /N tL /i d ht lhttp://www-personal.umich.edu/~ladamic/NetLogo/index.html
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Edge cop ing modelEdge copying model 
[Faloutsos / Leskovec ECML/PKDD 2007]

http://videolectures net/ecml07 leskovec mlg/http://videolectures.net/ecml07_leskovec_mlg/
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Forest Fire ModelForest Fire Model 
[Faloutsos / Leskovec ECML/PKDD 2007]
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Forest Fire ModelForest Fire Model 
[Faloutsos / Leskovec ECML/PKDD 2007]
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Forest Fire ModelForest Fire Model 
[Faloutsos / Leskovec ECML/PKDD 2007]
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Net ork Generators Description and S r eNetwork Generators: Description and Survey

D. Chakrabarti and C. Faloutsos. Graph mining: 
Laws, generators, and algorithms. 
ACM Comput. Surv., 38(1), 2006.
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Network Attacks

I f d R d Att kInformed vs. Random Attacks:

http://www-personal.umich.edu/~ladamic/GUESS/resiliencedegree.html
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Network ResilienceNetwork Resilience
[Newman 2003]

The resilience of networks with respect to vertex removal andThe resilience of networks with respect to vertex removal and 
network connectivity.

If vertices are removed from a network, the typical length of paths 
between pairs of vertices will increase – vertex pairs will be 
disconnected.

Examples: 
1 Deletion of a hub1. Deletion of a hub
2. Deletion of a leaf node element

The web is highly resilient against random failure of vertices, but 
highly vulnerable to deliberate attack on its highest-degree 
vertices 
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Network ResilienceNetwork Resilience
[Newman 2003]

D l t th d ith th hi h t d h t h t th t k?Delete the node with the highest degree, what happens to the network?
Deleting which nodes introduces a new component?

Example
F G

Connectivity: a function 
of whether a graph 
remains connected when

A

B

F G remains connected when 
nodes and/or lines are 
deleted. [Wassermann 
1994]

C

B

D

E
H

[Newman 2003]

D
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Network ResilienceNetwork Resilience
[Newman 2003]

Removal of high 
degree nodes 
first

Removal of 
random nodes
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Percolation Theory
[Newman 2003]

A l ti i i hi h tiA percolation process is one in which vertices or
edges on a graph are randomly designated either 

“occupied” or “unoccupied”“occupied” or “unoccupied”. 

O f th i ti ti f th l ti d lOne of the main motivations for the percolation model 
when it was first proposed in the 1950s was the 
modeling of the spread of diseasemodeling of the spread of disease.
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Connectivity of the WebConnectivity of the Web
[Newman 2003, Broder et al 2000]

Wh t d it d t d t th ti it f thWhat does it need to destroy the connectivity of the 
web?

According to Broder et al 2000, you need to remove all 
vertices with a degree greater than fivevertices with a degree greater than five.

Because of the highly skewed degree distribution of theBecause of the highly skewed degree distribution of the 
web, the fraction of vertices with degree greater than 
five is only a small fraction of all vertices.five is only a small fraction of all vertices.
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Percolation Theory
[Newman 2003]
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Two Fundamental Network Process Distinctions
[Newman 2003]

Epidemic processes
• such as influenza, which sweeps through the 

population rapidly and infects a significant fraction of 
individuals in a short outbreak (cf the SIR model)individuals in a short outbreak (cf. the SIR model)

Endemic processes
• such as measles which persists within the population• such as measles, which persists within the population 

at a level roughly constant over time. The disease 
can persist indefinitely, circulating around the can persist indefinitely, circulating around the 
population and never dying out (cf. the SIS model)
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The SIR Model
[Watts 2004]

The SIR model of network epidemicsThe SIR model of network epidemics

S Susceptible
Vulnerable to infection, but not yet been infected

I Infected
infected and infectious (can infect others)

R Removed
either recovered or ceased to pose a threateither recovered or ceased to pose a threat

Rules:
• New infections can only occur when an infected individual (an infective) comes 

i t di t t t ith tiblinto direct contact with a susceptible.

• The susceptible can become infected, with probability p depending on 
infectiousness of the disease and the characteristics of the susceptible

• Who comes into contact with whom will depend on the populations‘ network 
structure.
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The SIR Model 
[Watts 2004]
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The SIR Model 
[Watts 2004]

In its simplest version,

• based on purely random 
interactions

• Rate of infection depends onlyRate of infection depends only 
on the relative population sizes
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The SIR Model 
[Watts 2004]

Th SIR d lThe SIR model

In terms of the SIR model, 
stopping an epidemic is pp g p
roughly equivalent to 
preventing it from reaching 
the explosive growth phase.p g p

This implies focusing not on 
the size of the initial 
outbreak but on its rate of

Low High LowReproduction 
rate
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The SIR Model 
[Watts 2004]

E h i f ti i thEach infection requires the 
participation of both an 
infected and a susceptibel
individual.

The rate at which new infectionsThe rate at which new infections 
ca be generated depends on 
the size of both populations.

Reproduction rate:  the average 
number of new infectivesnumber of new infectives 
generated by each currently 
infected.
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The SIR Model 
[Watts 2004]

Condition for epidemics: reproduction rate >1 (threshold)p p ( )

Note: That‘s the same threshold at which a giant component occurs 
i t kin networks

SIR simulation: e.g. 
http://www.uni-tuebingen.de/modeling/Mod_Pub_Software_SIR_en.html
SI Diffusion in random networks: http://www-personal umich edu/~ladamic/NetLogo/ERdiffusion html
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SI Diffusion in scale-free networks: http://www-personal.umich.edu/~ladamic/NetLogo/BADiffusion.html
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Wh Z bi Att kWhen Zombies Attack
http://www.wiskundemeisjes.nl/wp-content/uploads/2009/08/zombies.pdf
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Applications of Graph Generators and GrowthApplications of Graph Generators and Growth 
Models [Leskovec 2006]

Recapitulation:Recapitulation:

• „ What if“ scenarios
F ti f t t f t d i l t k• Forecasting future parameters of computer and social networks

• Anomaly detection
• Graph sampling algorithms
• Realistic graph generators

Examples: p

• „Invites“ to join GMail
• „Invites“ to buy Chumby„Invites  to buy Chumby
• „Invites“ to join Joost
• Vaccination strategies for epidemics
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Any questions?y q

See you in two weeks!y
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