707.000
 Web Science and Web Technology „Affiliation Networks"

How can we identify and analyze subgroups in affiliation networks?

Markus Strohmaier

Univ. Ass. / Assistant Professor Knowledge Management Institute Graz University of Technology, Austria

FIGURE 6. Lattice of the Davis, Gardner, and Gardner data.
[Freeman White 1993]
e-mail: markus.strohmaier@tugraz.at web: http://www.kmi.tugraz.at/staff/markus

Centrality and Prestige in Undirected Social Graphs [Wasserman Faust 1994]

Examples and Simulation:

file:///M:/mydocs/courses/SS2010/707.000\%20Web\%20 Science\%20and\%20Web\%20Technology/measure/m easure.html

Overview

Today‘s Agenda:

Analysis of Afilliation Networks

- A (very brief) repetition of Affiliation Networks
- Properties of Affiliation Networks
- Properties of One-Mode Networks derived from Affiliation Networks
- Galois Lattices for Affiliation Networks

How can we identify groups and subgroups in a social graph?

Subgroups in Co-Affiliation Networks Borgatti 1997

- We talked about cliques, clans and clubs in 1-mode
- The obvious next step would be to try to identify these subgroups in co-affiliation networks.
- For example, we can search for cliques, n-cliques, n-clans, n-clubs.
- Unfortunately, these methods are not well suited for analysing a bipartite graph.
- In fact, bipartite graphs contain no cliques
- In contrast, bipartite graphs contain too many 2-cliques and 2clans.
- One of the problems is that, in the bipartite graph, all nodes of the same type are necessarily two links distant.
\rightarrow we need to consider special types of subgraphs which are more appropriate for two-mode data.

Subgroups in Co-Affiliation Networks

 Borgatti 1997- Clearly, we can define extensions of n-cliques, n clubs and n -clans to n -bicliques, n -biclubs and n biclans.
- But, the extensions would in many senses be unnatural since n would need to be odd.

Reminder: Social Networks Examples

Transforming Two Mode Networks into One Mode Networks

[Wasserman Faust 1994]

-Two one mode (or co-affiliation) networks (folded from the children/party affiliation network)

$$
M_{P}=M_{P C} * M_{P C}^{\prime}
$$

C...Children
P...Partv

Fig. 8.6. Event overlap matrix for the three parties
[Images taken from Wasserman Faust 1994]

Properties of Affiliation Networks

[Wasserman Faust 1994]

- Properties of Actors and Events
- Rates of Participation
- Size of Events
- Properties of One-Mode Networks that are derived from Affiliation Networks
- Density
- Reachability
- Connectedness
- Diameter
- Cohesive Subsets of Actors or Events
- (Reachability for Pairs of Actors)

Density

[Wasserman Faust 1994]

Reminder: Density in regular networks is the ratio of edges to vertices

- The density of a one-mode network derived from an affiliation network is a function of the pairwise ties between actors or between events.
- The number of overlap ties between events is, in part, a function of the number of events to which actors belong
- An actor only creates a tie between a pair of events if it belongs to both events.
- An actor who belongs to
- only one event creates no overlap ties between events
- exactly two events creates a single tie
- three events creates three ties

- In General
- An actor who belongs to n events creates $n^{*}(n-1) / 2$ ties
- Thus,
- the rates of membership for actors influence the number of ties between events, and

- the sizes of the events influnce the number of ties between actors.

Reachability, Connectedness, Diameter
 [Wasserman Faust 1994]

Reminder: Two nodes in a graph are adjacent if there is a line between them

- In an affiliation network,
- no pair of actors is adjacent
- No pair of events is adjacent
- no paths of length 1 between actors, but potentially paths of some longer length
- Reachability corresponds to path lengths between nodes
- An affiliation network is connected when all pairs of nodes (both actors and events) are reachable
- The diameter of an affiliation network is the length of the longest shortest path between any pair of nodes.

Reachability for Pairs of Actors

[Wasserman Faust 1994]

- In a valued graph, we can define connectedness at level \mathbf{c} as the subsets of actors all of whom are connected at some minimum level c
- Two nodes are c-connected (or reachable at level c) if there is a path between them in which all lines have a value of no less than c.
- Basis for the
k-neighbourhood graph $G_{k} /$ KNC Plot

Cohesive Subsets of Actors or Events

[Wasserman Faust 1994]

Reminder: a clique is a maximal complete subgraph of three or more nodes

- In a valued graph, we can define a clique at level c as a maximal complete subgraph of three or more nodes, all of which are adjacent at level c
- That is all pairs of nodes have lines between them with values that are greather than or equal to c. By increasing c, we can locate more cohesive subgroups.
- A clique at level c is a subgraph in which all pairs of actors share memberships in no fewer than c events
- Basis for the
k-neighbourhood graph G_{k} / KNC Plot

Affiliation Networks

[Wasserman Faust 1994]

$$
\operatorname{rc}(v)=\frac{\mid\left\{\{u, w\} \subseteq N(v), \exists v^{\prime} \neq v,\left(v^{\prime}, u\right) \in E \text { and }\left(v^{\prime}, w\right) \in E\right\} \mid}{\frac{|N(v)|(|N(v)|-1)}{2}}
$$

Number of possible links between neighbours

In other words, the redundancy coefficient of v is the fraction of pairs of neighbours of v linked to another node than v. In the projection, these nodes would be linked together even if v were not there, see Figure 9; this is why we call this the redundancy. If it is equal to 1 then the projection would be exactly the same without v; if it is 0 it means that none of its neighbours would be linked together in the projection ${ }^{21}$.

$\operatorname{Rc}(A)=$ 4/6

Figure 9: Example of redundancy computation. From left to right: a bipartite graph, its \perp projection, and the \perp-projection obtained if the node A is first removed. Only two links disappear, leading to $\mathrm{rc}(A)=\frac{4}{6}=0.666 \cdots$.

Affiliation Networks

[Wasserman Faust 1994]

So:

How can we simultaneously analyze

Actors AND Events

in Affiliation Networks?

Can we show both,

- the relationships among the entities within each mode, and also
- how the two modes are associated with each other?

Galois Lattices

[Freeman White 1993]

A satisfactory representation should facilitate the visualization of three kinds of patterning:

1. the actor-event structure,
2. the actor-actor structure, and
3. the event-event structure
at the same time.

Évariste Galois

1811-1832

- A republican (fighting the french king)
- Not allowed to enter Ecole Polytechnique twice
- No recognition of his work as a mathematician
(not considered for the Academy of Sciences Grand Prize in Mathematics for his ideas on solutions for quintic equations)
- Then he focused on politics / sentenced to prison for marching against the king
- Romance with a mysterious woman who was engaged
- Died in a pistol duel with her fiance at the age of 20
- A letter to his friends
,I beg my patriots, my friends, not to reproach me for dying otherwise than for my country. I died the victim of an infamous coquette and her two dupes. It is in a miserable piece of slander that I end my life. Oh! Why die for something so little, so contemptible? I call on heavon to witness that only under compulsion and force have I yielded to a provocation which I have tried to avert by every means". [Fermat's Last Theorem]
- Spent the night before the duel writing down his mathematical achievements (,I have no time!" see image to the right)

Galois Lattices (or Galois Connections)

[Wasserman Faust 1994, Freeman White 1993]

- A long history in Mathematics
- Introduced by Birkhoff in 1940 (cf. Birkhoff, ,Lattice Theory" 1967)
- Affiliation networks focus on subsets and the duality of the relationship between actors and events
- The idea of subsets refers both to subsets of actors contained in events and subsets of events that actors attend.
- The idea of duality refers to the complementary perspectives of relations
- between actors as participants in events, and
- between events as collections of actors.
- Galois lattices incorporate both ideas.
- Galois lattices are based on the kind of triple (A, E, I) defined by two mode social network data. A and E are finite nonempty sets and I (or lambda „ $\lambda^{\prime \prime}$) is a binary relation in $A \times E$.

A Lattice

[Wasserman Faust 1994]

- Galois lattices are special kind of lattices

Consider a set of elements $N=\left\{n_{1}, n_{2}, \ldots n_{g}\right\}$ and a binary relation „less than or equal" (\leq) that is reflexive, antisymmetric and transitive.

Formally

- Reflexive: $\mathrm{n}_{\mathrm{i}} \leq \mathrm{n}_{\mathrm{i}}$
- Antisymmetric: $n_{i} \leq n_{j}$ and $n_{j} \leq n_{i}$ iff $n_{j}=n_{i}$
- Transitive: $n_{i} \leq n_{j}$ and $n_{j} \leq n_{k}$ implies $n_{i} \leq n_{k}$

Such a system defines a partial order on the set N . (cf.Partially Ordered Sets, POS, poset)

A Lattice
 [Wasserman Faust 1994]

For any pair of elements, $\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}$, we define their

- lower bound as that element n_{k} such that $n_{k} \leq n_{i}$ and $n_{k} \leq n_{j}$
- upper bound as that element n_{k} such that $n_{i} \leq n_{k}$ and $n_{j} \leq n_{k}$

With that,

- A lower bound is called a greatest lower bound n_{k} (or meet/infimum) of n_{i}, n_{j} if $n_{l} \leq n_{k}$ for all lower bounds n_{l} of n_{i}, n_{j}
- An upper bound is called a least upper bound n_{k} (or join/supremum) of n_{i}, n_{j} if $n_{k} \leq n_{l}$ for all upper bounds n_{1} of n_{i}, n_{j}

A lattice consists of a set of elements N, a binary relation \leq that is reflexive, antisymmetric and transitive and each pair of elements $\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}$, has both a least upper bound and a greatest lower bound.

A lattice is thus a partially ordered set in which each pair of elements has both a meet and a join.

```
"\subseteq" as our relation
" \(\subseteq\) " as our relation
```


What is the least upper bound (join) of Allison and Eliot?
And what does it mean?

Lattice

[Wasserman Faust 1994]

Ross attended all parties that Eliot attended as well

Lattice

[Wasserman Faust 1994]

Who attended the most parties?

[Wasserman Faust 1994]

Each point represents a

 subset of children
[Wasserman Faust 1994]

Party 1: \{Allison, Ross, Sarah\}
Party 2: \{Drew, Eliot, Ross, Sarah\}
Party 3 : \{Allison, Eliot, Keith, Ross\}

Fig. 8.9. Relationships among birthday parties as subsets of children

A Galois Lattice
 [Wasserman Faust 1994]

A Galois lattice (also called a Galois connection) focuses on the relation between two sets.

- A relation λ is defined on pairs from the Cartesian product $N \times M$.
- λ is thus defined on pairs, a relation $n_{i} \in N \lambda m_{j} \in M$

We let the sets N and M be the set of actors and the set of events, and let λ be the relation of affiliation.

- Thus, $n_{i} \lambda m_{j}$ if actor i is affiliated with event j.

We also have λ^{-1} where $m_{j} \lambda^{-1} n_{i}$ if event j contains actor i.

A Galois Lattice
 [Wasserman Faust 1994]

Just as we have considered an individual actor and the subset of event with which it is affiliated, we can also consider a subset of actors and the subset of event with which all of these actors are affiliated.

We can define two mappings:

- \uparrow : $N_{s} \rightarrow M_{s}$ from a subset of actors $N_{s} \subseteq N$ to a subset of events $M_{S} \subseteq M$ such that $n_{i} \lambda m_{j}$ for all $n_{i} \in N_{i}$ and all $m_{j} \in M_{j}$.
- In terms of an affiliation network, the \uparrow mapping goes from a subset of actors to that subset of events with which all of the actors in the subset are affiliated.
- For example, if there is no event with which all actors in subset N_{s} are affiliated, then $\uparrow\left(N_{s}\right)=0$
- \downarrow mapping can be defined analogously.

\uparrow mapping

Galois Lattice

[Wasserman Faust 1994]

Which parties did both Eliot and Allison attend?

mapping
 Galois Lattice
 [Wasserman Faust 1994]

Who attended party 1 ?

Fig. 8.11. Galois lattice of children and birthday parties

Q1: What is the intersection set of children attending Party $2 \& 3$?
Q2: Is there a party that was attended by the intersection set of children attending Party 2 and 3 ?

But: there is no party which was attended by the intersection set of children attending Party 2 and Party 3 [Wasserman Faust 19,

Galois Lattice

[Wasserman Faust 1994]

Empty set of parties, set of all actors

Consider

- $\mathrm{N}_{\mathrm{s}}=$ \{Allison, Sarah $\}$

Since

- Allison \{Party 1, Party 3\}
- Sarah \{Party 1, Party 2\}

It follows that

- $\mathrm{M}_{\mathrm{s}}=\{$ Party 1$\}$ and
- $\uparrow\left(\mathrm{N}_{\mathrm{s}}\right)=\mathrm{M}_{\mathrm{s}}=\{$ Party 1$\}$

Consider

- $\mathrm{M}_{\mathrm{s}}=\{$ Party 1, Party 2 $\}$

Since

- Party 1 \{Allison, Ross, Sarah\}
- Party 2 \{Drew, Eliot, Ross, Sarah\} It follows that
- $\mathrm{N}_{\mathrm{s}}=\{$ Ross, Sarah $\}$ and
- $\downarrow\left(M_{s}\right)=N_{s}=\{$ Ross, Sarah $\}$

In terms of an affiliation network, the \uparrow mapping goes from a subset of actors to that subset of events with which all of the actors in the subset are affiliated.

Galois Lattice

[Freeman White 1993]

- Reduced and Full Labeling

Galois Lattice - Example

[Freeman White 1993]

ACTOR	EVENT													N
1	1	1	1	1	1	1	0	1	1	0	0	0	0	0
2	1	1	1	0	1	1	1	1	0	0	0	0	0	0
3	0	1	1	1	1	1	1	1	1	0	0	0	0	0
4	1	0	1	1	1	1	1	1	0	0	0	0	0	0
5	0	0	1	1	1	0	1	0	0	0	0	0	0	0
6	0	0	1	0	1	1	0	1	0	0	0	0	0	0
7	0	0	0	0	1	1	1	1	0	0	0	0	0	0
8	0	0	0	0	0	1	0	1	1	0	0	0	0	0
9	0	0	0	0	1	0	1	1	1	0	0	0	0	0
10	0	0	0	0	0	0	1	1	1	0	0	1	0	0
11	0	0	0	0	0	0	0	1	1	1	0	1	0	0
12	0	0	0	0	0	0	0	1	1	1	0	1	1	1
13	0	0	0	0	0	0	1	1	1	1	0	1	1	1
14	0	0	0	0	0	1	1	0	1	1	1	1	1	1
15	0	0	0	0	0	0	1	1	0	1	1	1	0	0
16	0	0	0	0	0	0	0	1	1	0	0	0	0	0
17	0	0	0	0	0	0	0	0	1	0	1	0	0	0
18	0	0	0	0	0	0	0	0	1	0	1	0	0	0

FIGURE 5. Davis, Gardner, and Gardner's two mode data.

FIGURE 6. Lattice of the Davis, Gardner, and Gardner data.

Galois Lattice

[Freeman White 1993]

What can we do with Galois Lattices?

1. We can see the pattern of participation of actors in events.

- Each actor (or set of actors) participated in those events labeled at or above her labeled point in the line diagram and each event (or set of events) included all the actors labeled at or below its point.
- Thus the relation $\lambda(\mathrm{I})$ is displayed, and the original data are completely recoverable from the diagram.

2. We can see the downward containment structures of events.

- The uppermost set of seven labeled events (E, F, G, H, I, K, and L) are the events that involved the largest sets of actors.
- Other events are contained in the lower intersections (meets) of these events. Event C is a second level event: It is contained in event E, and events A, B, and D are. in turn, third level events; they are contained in C (and therefore in E).
- Similarly, event J is second level, contained in L, and M and N are third level, contained in J.

3. We can see the upward containment structures of actors.

- The lowest labeled actors (1,2,3,4,13,14, and 15) are primary. They are the actors who were active in the largest sets of events.

4. We can distinguish classes of events.

- Two sets of events $\mathrm{E} 1=\{A, B, C, D, E\}$ and $E 2=\{J, K, L, M, N\}$ share no common actor. This is shown by the fact that their lower bound falls at the bottommost point, the point that contains no common actors. Therefore. E1 and E2 are group-defining events. In contrast. The four events E3 = $\{F, G, H, I)$ each share at least one actor with events in E1, and at least one actor with events in E2; they might be called bridging events.

5. We can see the segregation of actors by the event classes.

- The nonoverlapping event sets E1 and E2 segregate all but two of the actors into two sets A1 = \{1, 2, $3,4,5,6,7,9)$ and $\mathrm{A} 2=(10,11,12,13,14,15,17,18)$. Actors from these different subsets never interact in the non-overlapping events.

Galois Lattice
[Freeman White 1993]
What can we do with Galois Lattices?

First-level

1. We can see the pattern of participation of actors in events.
2. We can see the downward containment structures of events.
3. We can see the upward containment structures of actors.
4. We can distinguish classes of events.
5. We can see the segregation of actors by the event classes.

A1 FIGURE 6. Lattice of the Davis, Gardner, and Gardner data.

Advantages of Galois Lattices

[Wasserman Faust 1994]

- Focus on subsets
- Especially appropriate for representing affiliation networks
- Complementary relationships between actors and events displayed at the same time
- Patterns in the relationships between actors and events may be more apparent in the Galois lattice
\rightarrow Galois lattice serves much the same function as a graph or sociogram (which serves as a representation of a one-mode network)

Shortcomings of Galois Lattices

[Wasserman Faust 1994]

- Visual display of Galois Lattices can become quite complex
- No unique „best" visual representation for a given Galois lattice
- Although the vertical dimension represents the degrees of subset inclusion relationships, the horizontal dimension is arbitrary.
- Properties and further analyses of Galois lattices (unlike networks) are not well developed
\rightarrow Galois lattices are primarily an exploratory representation of an affiliation network, from which one might be able to see patterns in the data.

ConExp

Download: http://sourceforge.net/projects/conexp

 Project Website: http://conexp.sourceforge.net/ Documentation:http://conexp.sourceforge.net/users/documentation/

- Import your network data using .csv format
(see „Opening existing documents" in the documentation)
- Experiment with „Drawing Options" and layouting the lattice manually
- Show „multi-labels" for objects and attributes
- Interpret the lattice
- Save it in .cex file

Any questions?

See you in two weeks!

